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Objectives

Objectives

Characterize and model daily demand of electric energy in Uruguay

Identifying the incidence of specific events, individually and integrated
in the short term dynamic

Exploring the non-linear association between energy consumption and
climatic variables.
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Data sources

Data sources

UTE

INIA, Banco datos agroclimático

Instituto de Relaciones laborales, UCU. Índice de Conflictividad
Laboral (general strikes)
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Main features of the electric energy demand in Uruguay

Main features of the electric energy demand in Uruguay

Significant growth in energy demand over the last 30 years

2010 - 2019: 25,754 MWh - 30,399 MWh (daily average)

Average annual growth rate 2010-2019: 1.6 %

Main features

Evolution of average daily demand (trend)

Multiple seasonalities

Changes in seasonality
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Main features of the electric energy demand in Uruguay

Seasonal patterns of electricity demand in 2019 (MWh)

Daily electricity demand in 2019 (MWh) 

 

The highest daily peak take place in summer:January 29, with a 41,905 MWh
demand.

The secondly highest peak took place in winter: July with 34,762 MWh daily
consumption.

In the fall and spring the demand is lower due to the moderation of the climatic
variables in these seasons. 6 / 31



Main features of the electric energy demand in Uruguay

Changes in seasonal patterns 1992-2019

Graph 2.  Seasonal factor of electricity demand (1992-2019) 
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Seasonality (associated with the seasons) has changed in time, diminishing the gap
between winter and summer

Between 1992 and 2000 the energy consumption during summer represented 88 %
of that of the winter

Between 2010 and 2019, the energy consumption during summer increased, and
represented 93 %
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Main features of the electric energy demand in Uruguay

Weekly seasonality

Graph 3.  Average daily consumption by day of the week, ( % of the weekly average 

consumption)
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There is no noticeable change in this pattern throughout the period analyzed.

Saturdays and Sundays average consumption represents nearly 95 % and 85 % of
the average consumption of the trading days (Monday, Tuesday, Wednesday,
Thursday, Friday), respectively.
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Methodology

Methodological approach

Based on Cancelo and Espasa (1996):
Modelling the non linear link between energetic consumption and
climate variables, incorporating a detailed analysis of intervention on
special days (holidays, vacations, strikes).

lnDt = FSt + ESt + CDEt + CVCt + εt (1)

lnDt the natural logarithm of the daily energy demand in Uruguay

FSt a trend associated to socioeconomic factors that influence the energetic demand

ESt the weekly seasonal pattern

CDEt the special days contribution to the energetic demand

CVCt the climate variables contribution

εt random shocks not taken into account in any previous variables
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Methodology

Methodological background II

lnDBt = lnDt − CDEt − CVCt = FSt + ESt + εt (2)

The basic demand DBt is corrected for the effects of special days and the
effect of climatic variables.

DBt contains the more stable components of demand that could be
expressed as an ARIMA model.

∆∆7lnDBt = ηt (3)

Being ηt a stationary ARMA (p,q) process.

∆∆7lnDt = ∆∆7CDEt + ∆∆7CVCt + ηt (4)
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Methodology

Methodological background III

CDEt = f1(L)DEt =
∑i=m

i=1
f1,i (L)DEi ,t (5)

CVCt = f2(L)VCt =
∑j=n

j=1
f2,j(L)VCj ,t (6)

DEt a matrix conformed by m dummy variables used to model special days
f1 a vector of polynomials associated to the L operator.

VCt corresponds to the matrix composed by n variables used to model the
effects of climate variables
f2 refers to the polynomials vector associated to L.

f1 and f2 will represent the specific dynamics of each of these variables
respectively.

∆∆7lnDt = ∆∆7f1(L)DEt + ∆∆7f2(L)VCt + ηt (7)
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Methodology

The treatment of the effects of the special days II

∆∆7lnDt =∑j=4

j=1
f1(L)∆∆7Gj ,t ∗ Sunt +

∑j=4

j=1
f2(L)∆∆7Gj ,t ∗ Satt

+
∑j=4

j=1
f3(L)∆∆7Gj ,t ∗ Frit +

∑j=4

j=1
f4(L)∆∆7Gj ,t ∗ Thut

+ ......+ ∆∆7f10(L) ∗ Eastert + ∆∆7f11(L) ∗ Carninvalt

+ ∆∆7f12(L) ∗ Striket + ϕt

(8)

The interaction of holiday variables (grouped) and day of the week variables allows
us to measure the impact of the holidays depending on the week day they fall

Easter indicates Easter Sunday

Carnival designates Carnival Tuesday

Strike assembles all general activity strikes

fi (L) capture the dynamic of the calendar effects
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Methodology

The non-linear model applied

One of the unarguable features of the link between climate variables and
energetic demand is its non linearity.

Our contribution consists on the usage of Markov´s Switching Models
to estimate breaking points on the demand function

Include different climatic variables: wind, relative humidity and the
solar light (heliophany) that affect apparent temperature and
therefore individual‘s thermal comfort needs
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Methodology

Two step procedure for estimating breaking points

Step 1: Estimation a linear function to determine relevant climatic
variables to model energetic demand, as well as its structure and main
outliers.

Step 2: Estimation of breaking points. Following Markov´s Switching
Model methodology
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Methodology

∆∆7lnDADt =

∆∆7f21(L) ∗ Warmt+

∆∆7(Tempt − W i
t ) ∗ f22(L) ∗ Warmt+

∆∆7f23(L) ∗ Coldt+

∆∆7(Tempt − C i
t ) ∗ f24(L) ∗ Coldt+

∆∆7Heliophany ∗ f25(L) ∗ Warmt+

∆∆7Heliophany ∗ f26(L) ∗ Coldt+

∆∆7RH ∗ f27(L) ∗ Warmt+

∆∆7RH ∗ f28(L) ∗ Coldt+

∆∆7Wind ∗ f29(L) ∗ Warmt+

∆∆7Wind ∗ f30(L) ∗ Coldt+

∆∆7Hourt + ∆∆7Veranillot + ∆∆7Savet+∑j=11

j=1
∆∆7Monthi ,t +

∑j=s

j=1
∆∆7Outlieri ,t +

θ(L)

φ(L)
at

(9)15 / 31



Methodology

Search for the breaking point
W i

t and C i
t are threshold variables

W i
t = max [0, ki − Temp] y C i

t =max [0, ki − Temp]

ki the ith break found in the link between energetic consumption and temperature,
in warm and cold season respectively

Find ki , following Markov´s Switching Models methodology, and
choosing as break point candidate the temperature that minimized
the squared sum of errors of the regression.

Second stage:Tested the existence of significant differences among
parameters associated with the Temp variable for values above and
below ki .

This process is repeated until we no ki for which estimated
parameters are not significantly different is found

We do not take into account for the estimation of breaking points,
5 % of the lowest and highest observed temperatures on each season,
(warm and cold)
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Methodology

The final equation

∆∆7lnDADt =∑j=v

j=1
∆∆7W i

t f31(L) ∗ Warmt+∑j=v

j=1
∆∆7(Tempt − W i

t ) ∗ f32(L) ∗ Warmt+∑j=v

j=1
∆∆7C i

t f33(L) ∗ Coldt+

∆∆7(Tempt − C i
t ) ∗ f34(L) ∗ Coldt+

∆∆7Heliophany ∗ f35(L) ∗ Warmt+

∆∆7Heliophany ∗ f36(L) ∗ Coldt+

∆∆7RH ∗ f37(L) ∗ Warmt + ∆∆7RH ∗ f38(L) ∗ Coldt+

∆∆7Wind ∗ f39(L) ∗ Warmt + ∆∆7Wind ∗ f40(L) ∗ Coldt+

∆∆7Hourt + ∆∆7Savet + ∆∆7Veranillot+∑j=11

j=1
∆∆7Monthi ,t +

∑j=s

j=1
∆∆7Outlieri ,t +

θ(L)

φ(L)
at

(10)
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Methodology

Climatic inertia

Residences keep ambient temperature, at least for a few days.

A given temperature does not have the same effect in summer than in
winter, and different breaking points have to be found for different
seasons.

Two qualitative variables are included: warm and cold; that reflect
the months when average temperature is higher than the year average
temperature (the first one) and those when it is not (the second).

Two variables interact with the observed temperature

cold dummy: months May, June, July, August, September and October.
Warm dummy is defined by difference.

18 / 31



Results Treatment of the calendar effect for Uruguay

The treatment of the effects of the special days

National holidays were included, both workable and not: Easter, Carnival, holidays
and strikes.

Their impact is different according to which week day, and they also have lagged
and forward effects on the demand.

Four groups in which we grouped the different holidays according to its incidence
in energetic consumption.

Table 1. Holiday Groups and effects (average dynamic effects)

Sample 2010 -2019

Group 1 January 1, December 25 -0.097
Group 2 May 1, August 25, March 1 -0.061
Group 3 January 6, July 18, November 2 -0.036
Group 4 April 19,May 18, June 19, October 12 -0.015

Easter -0.051
Carnival -0.037

Note: Impacts are on ∆∆7lnDt .
Source: Authors estimations.

19 / 31



Results Temperature thresholds and nonlinear modeling

Temperature thresholds and nonlinear modeling

Table 2.Breaking point estimation on the electric demand function

Function section lag Coeff ΣCoeff

Warm Between 16 C◦ − 25C ◦ 0 0.742 %
1 0.149 % 0.891 %

More than 25 C◦ 0 0.294 %
1 0.029 % 0.323 %

Cold Less than 10 C◦ 0 0.522 %
1 0.254 % 0.776 %

Between 10 C◦ − 16C ◦ 0 0.233 %
1 0.135 % 0.368 %

Source: Authors estimations.
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Results Temperature thresholds and nonlinear modeling

Temperature thresholds and nonlinear modeling

Graph 5. Graphic representation of temperature impact on the daily weekly growth rate energetic 

demand, Base Index 100=0% growth 
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Results Climatic Variables Effects on Electricity Demand

Climatic Variables Effects on Electricity Demand

Table 4.Climatic Variables Effects on Electricity Demand

Climatic Variable lag Coeff Coeff

Warm Heliophany 0 0.007 %
1 0.036 % 0.043 %

Relative humidity 0 0.026 % 0.026 %

Cold Heliophany 1 0.026 % 0.026 %

Wind 1 0.0013 % 0.0013 %

Source: Authors estimations.

22 / 31



Predictive evaluation

Predictive evaluation

In order to assess the model´s predictive capability we left out the last year of the
sample (from 01/01/2019 to 12/31/3019) and calculate the forecast error for each
of the following months.

Table 5.Mean absolute relative errors for 7,and 14 prediction horizons

Steps January February March April May June July

h=7 3.4 3.3 2.0 1.6 2.0 2.8 2.8
h=14 3.7 4.0 2.3 1.9 2.3 3.5 3.3

Steps August Sep. October Nov Dec Annual Average.

h=7 3.0 2.1 3.9 2.1 2.9 2.7
h=14 3.7 2.6 4.7 2.4 3.3 3.1

Note: Predictions during 4 weeks for each month
Source: Authors estimations

Both in the 7-step and in in the 14-step prediction, October is the month with the
highest error.

These poor results during the month of October 2019 are due to the fact that
substantially higher errors were recorded during the first two weeks of the month
than in the last two weeks.
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Predictive evaluation

Predictive evaluation II

If another, less demanding indicator is used, such as the relative error at 7 and 14 steps.

Table 6.Mean relative errors for 7,and 14 prediction horizons

Steps January February March April May June July

h=7 -0.64 0.6 -0.03 -0.1 -0.31 0.11 0.1
h=14 0.02 0.2 0.14 -0.1 -0.04 -0.04 0.4

Steps August Sep. October Nov Dec Annual Av.

h=7 0.63 0.2 -1.6 -1.0 -0.30 -0.19
h=14 0.03 -0.3 -0.4 -0.4 -0.03 -0.05

Note: Predictions during 4 weeks for each month
Source: Authors estimations

As expected, the largest errors are concentrated in the month of October.

As we saw in the previous Table, these poor results for the first two weeks of
October 2019 negatively affect the relative errors for the month.

The relative error during the first two weeks of the month was -3.25 %, while in
the following two weeks it was 0.04 %.
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Predictive evaluation

Update of predictions
Note that errors were estimated from predictions with exogenous variables already
observed.

Prediction update results: each bar indicates the absolute relative error level, and
the overlap of bars indicates the reduction of the error when new information is
incorporated.

Considering the negative results obtained for the month of October 2019, we
analyze how the forecasting update process operates in that month.

Graph 6: Prediction adjustment process. October 2019 
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Figura 1: Source:Authors calculations
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Conclusions

Main conclusions

This paper revise and update a preliminary work that with estimations
to 2012.

Our results show the incidence of the special days (calendar effects,
holidays) and saving energy measures.The relevance of capturing
these effects where the heterogeneity of the joint impact of the
holidays can be captured according to the day of the week on which
they fall and their temporal dynamics.

Modeling the association between energy consumption and climatic
variables (temperature, humidity, winds and heliophany) with a
non-linear model with estimated breaks (estimated by applying
Markov´s Switching Models).

Breaks were identified by considering the sample split in warms and
cold months at 16C ◦, 25C ◦ (in warm months) and at 10C ◦ in cold
months.
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Conclusions

Main conclusions

The estimated coefficients show that the electricity demand function
changed compared with the preliminary paper.

At high temperatures, the demand function increase at a major rate,
and therefore, the curve is sharper. A saturation temperature is
reached.

The section of the function corresponding to colder temperatures
remains relatively similar.

These changes are probably associated with the increased use and
availability of refrigeration equipment by households.

The predictive assessment conducted during 2019, indicates that the
model is adequate to predict the next 7 days.

Further research must focus on the analysis of the month of October
where climatic variability is significantly higher.
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