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Abstract The technique applied by the authors to construct consistent and focused
tests of fit for i.i.d. samples and regression models is extended to AR models for
stationary time series. This approach leads to construct a consistent goodness-of-fit
test for the null hypothesis that a stationary series is governed by an autoregressive
model of a given order p. In addition of the consistency, the test is focused to
detect efficiently the alternative of an AR(p + 1) model. The basic functional statistic
conveying the information provided by the series is the process of accumulated sums
of the residuals computed under the model of the null hypothesis of fit, reordered
as concomitants of the conveniently delayed process. This process is transformed in
order to obtain a new process with the same limiting Gaussian law encountered in
earlier applications of the technique. Therefore, a Watson type quadratic statistic
computed from this process has the same asymptotic laws under the null hypothesis
of fit, and also under the alternatives of focusing, than the test statistics used in those
applications. As a consequence, the resulting test has the same desirable performance
as the tests previously developed by applying the same kind of transformations of
processes.
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1 Introduction

Let (Xi)−p≤i≤n denote observations of a stationary causal AR model with integral
parameter i.

We wish to test the null hypothesis

H0 The observed values are distributed according to the stationary Gaussian model

Xi = φ1 Xi−1 + · · · + φp Xi−p + σ Zi, i = 1, 2, . . . , n (1)

of order p with i.i.d. innovations Zi, EZi = 0, EZ 2
i = 1.

against any alternative model, and also wish to focus the inference on the sequence
of local alternatives

H1 The model

Xi = φ1 Xi−1 + · · · + φp Xi−p + δ√
n

Xi−p−1 + σ Zi, i = 1, 2, . . . , n

holds for (Xi)−p≤i≤n with some δ �= 0 and the same assumptions on the
innovations.

Under H0 the linear combination Ži = 1
σ
[Xi − ∑p

j=1 φ jXi− j] is equal to Zi and
therefore is independent of {Xk : k < i}. On the other hand, under the alternative
H1, it is equal to δ

σ
√

n Xi−p−1 + Zi and hence, correlated with Xi−p−1.
This implies that for 0 < x1 < x2 the expectations under H1 of the random

variables 1{x1<Xi−p−1<x2} Ži have the same sign as δ, while for x1 < x2 < 0 they have
the opposite sign. Consequently the sum

1√
n

n∑

i=1

1{Xi−p−1<x} Ži (2)

is centred for all x under H0, and is expected to be either increasing or decreasing
for x < 0 and to exhibit the opposite behaviour for x > 0, depending of the sign of
δ, under the alternative. This suggests to decide rejecting H0 or not according to the
behaviour of Eq. 2.

Since the Ži are not observable, they must be replaced by estimates, and this is the
reason why we analyse the behaviour of the empirical process marked with residuals
defined by Eq. 10.

Processes of this type have been extensively used in model checks for regression
and time series. A broad list of references can be found in Escanciano (2007b). There
is a connection between our starting point and that in Ngatchou-Wandji and Laïb
(2008), though their test refers to a nonlinear AR model of order one, and ours to
linear AR models of any finite order.
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On the other hand, a first study of the limiting behaviour of empirical processes
of the residuals of autoregressive models can be found in Kulperger (1985). See also
Bai (1994), Lee and Wei (1999) and Engler and Nielsen (2009).

J. C. Escanciano has studied the weak convergence of several marked empirical
process related to time series problems, including multidimensional non linear
autoregressive models of order one and heteroskedastic series (Escanciano 2007a,
b, 2010), and applies his results to model checks in parametric regression, and
martingale hypothesis.

For our purposes of designing focused tests, we need to analyse the weak conver-
gence of Eq. 10 not only under the null hypothesis, but also under local alternatives,
and this is the purpose of Section 3.

The present article extends the methods applied in previous work on assessing
goodness of fit for i.i.d. sequences and regression models (Cabaña and Cabaña
2003, 2009). These procedures share the property of being consistent, asymptotically
distribution free, and with almost optimal power with respect to the alternatives of
focusing. Next section presents the general ideas regarding those methods.

Finally, the test is described in Section 4, and its statistical application is illustrated
with one example.

2 A Recipe for Goodness-of-Fit Testing by Transforming Processes

The empirical information applied in solving many inference problems can be
described and summarized by means of certain random processes, that we will
generically denote by rn, where n is the number of observations. Important examples
are the empirical process built from i.i.d. samples, or the processes of accumulated
residuals, in regression. In both cases, rn converges in law to a Gaussian process r:
the Brownian Bridge in the i.i.d. case, and a Wiener process for the accumulated
residuals in regression (see Cabaña and Cabaña 2003, 2009).

In the present context of time series, we will study the marked empirical processes
rn = ζn and rn = ζ̂n defined by Eqs. 9 and 10, respectively. We state in Section 3 that
these processes also have Gaussian limits.

Because in all cases the limit of the process rn is Gaussian, it is natural to test the
effect of different alternative models through the limiting distribution with the use of
contiguity and Le Cam Third Lemma (Hájek and Šidák 1999, Section 7.1.4; see also
Lehmann and Romano 2005, Corollary 12.3.2).

We shall briefly summarize some facts about the processes rn which are common
to all scenarios, and discuss how to make inference based on any of these processes
and their Gaussian limits r in order to solve goodness-of-fit problems.

Consider rn and r as members of the space L2(R, P) of square integrable functions
defined on R with respect to a suitably chosen probability measure P and let wP

denote a (P)-Wiener process, that is, a centred Gaussian process with independent
increments and variance E(wP(b) − wP(a))2 = P((a, b ]) (a < b).

Under the null hypothesis of fit, in all our previous applications, r can be written
as the integral of the projection of a Gaussian white noise, that is, the formal
derivative dwP/dP, on the orthogonal complement of a finite-dimensional subspace
S of L2(R, P), with the scalar product given by the Wiener integral 〈g, dwP/dP〉 =∫ ∞
−∞ g(s)dwP(s).
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For instance, in testing the fit of a random sample to a given distribution, r is a
Brownian bridge and S is the one dimensional subspace generated by the constant
functions. In testing the fit to a family with d parameters the dimension of S increases
by d (Cabaña and Cabaña 2003, 2005). In the case of a linear model with d unknown
coefficients including the intercept, S has dimension d (Cabaña and Cabaña 2009).

By selecting any orthonormal basis (ψ j) j=0,1,2,... such that ψ0, . . . , ψd−1 generate S,
r(t) can be written as the integrated Fourier expansion

r(t) =
∞∑

j=d

B j

∫ t

−∞
ψ j(s)dP(s)

with B j = ∫ ∞
−∞ ψ j(s)dw(s) i.i.d.standard Gaussian. In all the cases formerly devel-

oped the constant functions belong to S and therefore we choose ψ0 = 1 with no loss
of generality.

In each of those applications, a suitable family of contiguous alternatives is
considered, under which the asymptotic distribution of rn(t) is r(t) plus a drift
δ
∫ t
−∞ k(s)dP(s), where k is a function of norm one, orthogonal to S.
By further imposing ψd = k, the limiting law of rn(t) becomes

(Bd + δ)

∫ t

−∞
ψd(s)dP(s) +

∞∑

j=d+1

B j

∫ t

−∞
ψ j(s)dP(s). (3)

The effect of the parameter estimation on the limiting distribution is reflected only
by S, so, in order to avoid it and get a distribution free functional statistic, we apply
to rn(t) the transformation that maps each expansion

∑∞
j=d c j

∫ t
−∞ ψ j(s)dP(s) onto

∑∞
j=0 c j+d

∫ t
−∞ ψ j(s)dP(s), and hence the transformed process wn(t) has limit

(Bd + δ)

∫ t

−∞
dP(s) +

∞∑

j=1

B j+d

∫ t

−∞
ψ j(s)dP(s) = w(P(t)) + δP(t)

with a standard Wiener process w and P(t) = ∫ t
−∞ dP(s).

The process wn is obtained from rn by means of

wn(t) =
∫

(T 1t(s))drn(s)

where 1t is the indicator function of (−∞, t) and T is the inverse of the d-th power
of the backshift operator associated to the given basis, and hence an isometry.

Consequently statistics of Kolmogorov–Smirnov, Cramér–von Mises and Watson
type lead to consistent tests of the null hypothesis δ = 0, focused on the alterna-
tive δ �= 0.

In our former applications we have tested δ = 0 by means of the Watson type
statistic

Qn =
∫ ∞

−∞

∫ ∞

−∞

(∫ ∞

−∞
cs,t(u)dwn(u)

)2

dP(s) dP(t) (4)

with cs,t(u) = 1{s<u<t} + 1{u<t<s} + 1{t<s<u}, adapted to the processes wn that do not
vanish at +∞, and critical regions Qn >constant.
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Notice that in order to get the value of Qn, the actual computation of the
transformed process wn is not required, because changing the order of the integrals
in Eq. 4 leads to write

Qn =
∫ ∞

−∞

∫ ∞

−∞
((|P(s) − P(t)| − 1/2)2 + 1/4)dwn(s)dwn(t)

=
∫ 1

0

∫ 1

0
((|u − v| − 1/2)2 + 1/4)dwn(P−1(u))dwn(P−1(v))

and hence the double Fourier expansion

(|P(s) − P(t)| − 1/2)2 + 1/4 =
∞∑

j,k=0

c j,kψ j(s)ψk(t)

with

c j,k =
∫ ∞

−∞

∫ ∞

−∞

[(

|P(s) − P(t)| − 1

2

)2

+ 1

4

]

ψ j(s)ψk(t)dP(s)dP(t)

reduces Qn to the quadratic form

Qn =
∞∑

j=0

∞∑

k=0

c j,kε j+dεk+d

where

ε j+d =
∫ ∞

−∞
ψ j(s)dwn(s) =

∫ ∞

−∞
ψ j+d(s)drn(s).

The convergence in law of rn to r implies that

Qn
L→ Q = 1

3
(Z + δ)2 + Q′, Q′ =

∞∑

j=1

C2
j + S2

j

2 j2π2

(see Cabaña and Cabaña 2009), where Z , C j, S j( j = 1, 2, . . . ) are i.i.d. standard
Gaussian.

We have preferred to use a quadratic functional of wn and not a statistic of
the Kolmogorov–Smirnov type, because the latter one requires to establish the
convergence of wn in the supremum norm, while the uniform convergence of rn

suffices to ensure the convergence in law of the quadratic statistic (see Cabaña and
Cabaña 2009, Section 3.1.6).

On the other hand, the use of Watson statistic is a consequence of the discussion
in Cabaña and Cabaña (2001).

In each application, we have noticed that the test with critical region (Z +
δ)2 >constant is asymptotically equivalent to the two-sided test of δ = 0 against δ �= 0
based on the Neyman–Pearson statistic. The addition of Q′, that makes the test based
on Qn consistent against fixed alternatives, reduces its asymptotic power in relation
with the power of the two-sided Neyman–Pearson test, which is not consistent.
However, the loss in power is negligible as shown in Fig. 1, due to the relatively
small variance of Q′.
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Fig. 1 Ratio of asymptotic
powers of the test based on Qn
and the two-sided
Neyman–Pearson test, with
level 5%
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In order to extend the previous methodology for testing goodness of fit in our
present time series setup, we verify in next section that the limiting distribution of
the empirical process marked with residuals (10) is closely related to the integral of
the projection of a white noise onto a subspace of finite codimension, and replace
it by a slight modification that has exactly the required asymptotic law, as shown in
Corollary 1. Once this is done, the construction of the test for AR models following
our general procedure is straightforward. For this present application, the space
L2(R, P) is replaced by L2([0, 1]) with the uniform (Lebesgue) measure.

3 The Convergence Results

Let (Xi)−p≤i≤n denote observations of a stationary causal AR model

Xi = φ1 Xi−1 + · · · + φp Xi−p + δ√
n

Xi−p−1 + σ Zi, i = 1, 2, . . . , n (5)

with i.i.d. centred innovations Zi with variance equal one.
In order to simplify the assumptions required for this presentation, we assume that

the Zi and hence the Xi are Gaussian. As an anonymous referee has kindly pointed
out, such strong assumption is not necessary, and can be replaced by arguments as the
ones applied in Koul (2002) to analyse the weak convergence of randomly weighted
empirical processes.

Let γ j = EXi Xi− j, ρ j = γ j/γ0 denote the covariances and correlation coefficients
of the random variables Xi, i = 0, 1, 2, . . . .

When δ = 0, the vectors γ ,φ and the matrix � defined by

γ =

⎛

⎜
⎜
⎝

γ1

γ2

. . .

γp

⎞

⎟
⎟
⎠ ,φ =

⎛

⎜
⎜
⎝

φ1

φ2

. . .

φp

⎞

⎟
⎟
⎠ , � =

⎛

⎜
⎜
⎜
⎜
⎝

γ0 γ1 . . . γp−1

γ1 γ0 . . . γp−2

γ2 γ1 . . . γp−3

. . . . . . . . . . . .

γp−1 γp−2 . . . γ0

⎞

⎟
⎟
⎟
⎟
⎠
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are related by the well known Yule–Walker equations �φ = γ . The equation γ trφ =
γ0 − σ 2 also holds (see for instance Brockwell and Davis 2002).

The unknown parameters of the model, namely, φ = (φ1, . . . , φp)
tr and σ can be

estimated by conditional maximum likelihood under the assumption δ = 0 corre-
sponding to an AR(p) model. Rewrite Eq. 5 with vector notation as

X =
p∑

j=1

φ jX j + δ√
n

X p+1 + σ Z (6)

with X j = (X1− j, X2− j, . . . , Xn− j)
tr ( j = 0, 1, 2, . . . , p + 1), X = X0, and Z =

(Z1, . . . , Zn)
tr.

With X = (X1, X2, . . . , X p) and δ = 0, Eq. 6 reduces to X = Xφ + σ Z, which for
each n leads to the conditional maximum likelihood estimators (given X−p+1, X−p+2,
. . . , X−1, X0):

φ̂n = (X trX )−1X tr X, σ̂ 2
n = 1

n
‖X − X φ̂n‖2. (7)

Let us introduce the residuals

Ẑ = 1

σ̂n
(X − X φ̂n) = (Ẑ1,n, Ẑ2,n, . . . , Ẑn,n)

tr, (8)

the random sums

η j,n = 1√
nγ0

n∑

i=1

Xi− jZi, j = 1, 2, . . . ,

the empirical process marked with the true innovations

ζn(t) = 1√
n

n∑

i=1

1{Xi−p−1≤√
γ0
−1(t)} Zi, (9)

(
 denotes the standard normal c.d.f.) and the empirical process marked with
residuals

ζ̂n(t) = 1√
n

n∑

i=1

1{Xi−p−1≤√
γ0
−1(t)} Ẑi,n. (10)

With these notations, the following statements hold:

Theorem 1 For δ = 0, the sequence of processes ζn(t), 0 ≤ t ≤ 1 converges weakly in
D(0, 1) to a standard Wiener process ξ(t) on (0, 1).

Theorem 2 Let ρ̃ = (ρp, ρp−1 . . . , ρ1) denote the vector of correlation coef f icients in
reversed order and ϕ the standard normal p.d.f.

(i) For δ = 0, the sequence (ζn(t), ηn) with ηn = (η1,n, η2,n, . . . , ηp,n) converges
jointly in law to (ξ(t), η), where η is a centred Gaussian vector with variance
matrix R := �/γ0, and Eξ(t)η = −ρ̃ϕ(
−1(t)).
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(ii) The pair (ξ(t), η) admits the representation

(ξ(t), η) ∼ (ξ(t), ξ1ρ̃ + θ)

with ξ1 = ∫ 1
0 
−1(s)dξ(s) and θ centred Gaussian with variance V = R − ρ̃ρ̃

tr,
independent of ξ(t), 0 ≤ t ≤ 1.

Theorem 3

(i) For δ = 0 the process ζ̂n(t) converges weakly in D(0, 1) to the centred Gaussian
process

ζ(t) = ξ(t) −
∫ t

0

−1(s)ds

1

γ0

(
ξ1(γ0 − σ 2) + σ

√
γ0 − σ 2W

)
(11)

where ξ1 = ∫ 1
0 
−1(s)dξ(s) and W is a standard Gaussian variable independent

of ξ .
(ii) For general δ, the process ζ̂n(t) converges weakly in D(0, 1) to

ζ(t) + δσ√
γ0

∫ t

0

−1(s)ds. (12)

Note The correction added to ξ(t) in Eq. 11 is due to the estimation by conditional
ML of the parameters of the AR(p) process. A correction would also appear for
other estimators such as least squares, and more generally those admitting a Bahadur
representation. The correction for δ �= 0 is the addition of a deterministic term as
implied by Le Cam Third Lemma.

Corollary 1 Let (g j(t)) j=0,1,... denote an orthonormal basis of L2(0, 1) with the uni-
form measure, such that g0(t) = 1, g1(t) = 
−1(t) and (w j) j=0,1,2,... be i.i.d. standard
Gaussian.

The sequence of processes

ζ ∗
n (t) = ζ̂n(t) +

(√
γ0/σ 2 − 1

) ∫ t

0
g1(s)ds

∫ 1

0

−1(s)dζ̂n(s) − t

∫ 1

0
dζ̂n(s)

converges in distribution to

(w1 + δ)

∫ t

0
g1(s)ds +

∞∑

j=2

w j

∫ t

0
g j(s)ds = w(t) − tw(1) − δϕ(
−1(t)) (13)

where w(t) = ∑∞
j=0 w j

∫ t
0 g j(s)ds is a standard Wiener process.

Remark 1 An orthonormal basis with the properties stated in the corollary is
obtained with g j(t) = h j(


−1(t)), where (h j) j=0,1,2,... are the normalised Hermite
polynomials defined by the expansion

e−y2+xy =
∞∑

j=0

h j(x)y j/
√

j!.
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Remark 2 The limiting distribution (13) indicates that ζ ∗
n provides a fair asymptotic

starting point to perform inference with optimal properties about the model (5) and
the null hypothesis “δ = 0” in particular, as discussed in next section.

4 A Test of the Null Hypothesis δ = 0

4.1 On a Test Statistic Based on the Marked Process

The limiting distributions of the processes associated to ζ̂n(t) stated in Theorem 3
indicate that those processes provide information useful in making inference about
Eq. 5, but all of them contain some unknowns parameters, so that they cannot be
computed exclusively from the data.

For this reason we consider the pairs (Xi−p−1, Ẑi)i=1,2,...,n and denote by Ẑ (i:n) the
concomitants of the order statistics Xi−p−1:n, that is, the order statistics of (Ẑi)i=1,2,...,n

with the order induced by the (Xi−p−1)i=1,2,...,n. Now we introduce a new sequence of
processes, namely, the partial sums

zn(t) = 1√
n

[(n+1)t]∑

i=1

Ẑ (i:n)

where [·] denotes the integer part.
We shall notice that ζ̂n and this functional statistic are asymptotically equivalent,

so that the inference can be performed from zn that has the same desirable properties
as ζ̂n.

The equivalence is due to the fact that both processes are related by

zn

(
n

n + 1
Fn(t)

)

= ζ̂n(t) (14)

where Fn(t) = 1
n

∑n
i=1 1{Xi−p−1≤√

γ0
−1(t)}, because the limit in probability
plimn→∞ sup0<t<1 | n

n+1 Fn(t) − t| = plimn→∞ sup0<t<1 |Fn(t) − t| = 0 holds.
Now Corollary 1 leads to conclude that the sequence

z∗
n(t) = zn(t) − ϕ(
−1(t))

(√
γ̂0,n/σ̂ 2

n − 1

)∫ 1

0

−1(s)dzn(s) − tzn(1)

= 1√
n

[(n+1)t]∑

i=1

Ẑ (i:n) − ϕ(
−1(t))
(√

γ̂0,n/σ̂ 2
n − 1

)

× 1√
n

n∑

i=1


−1

(
i

n + 1

)

Ẑ (i:n) − t
1√
n

n∑

i=1

Ẑi

converges in distribution to Eq. 13, that is precisely Eq. 3 with d = 1, ψ j = g j and P
is the uniform distribution on (0, 1).

Consequently the test statistics becomes

Qn =
∞∑

j=0

∞∑

k=0

c j,kε j+1εk+1
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where

c j,k =
∫ 1

0

∫ 1

0
((|u − v| − 1/2)2 + 1/4)g j(u)gk(v)du dv,

=
∫ ∞

−∞

∫ ∞

−∞

[(

|
(s) − 
(t)| − 1

2

)2

+ 1

4

]

h j(s)hk(t)d
(s)d
(t)

and

ε j =
∫ 1

0
g j(s)dz∗

n(s) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

√
γ̂0,n

σ̂ 2
n

1√
n

∑n
i=1 g1(i/(n + 1))Ẑ (i:n) for j = 1

1√
n

∑n
i=1 g j(i/(n + 1))Ẑ (i:n) for j > 1.

The coefficients c j,k have already appeared in the normality tests introduced in
Cabaña and Cabaña (2003), where their values for 0 ≤ j, k ≤ 5 are tabulated. Table 1
provides their values for 0 ≤ j, k ≤ 11. For practical computations, the quadratic
form Qn is approximated by Q(�)

n = ∑�
j,k=0 c j,kε j+1εk+1 with some moderate value

of �.
While the test based on Qn is consistent, the one based on Q(�)

n is not. In order to
maintain the consistency, it would be required to let � tend to infinity, as n → ∞. For
practical purposes, a moderate value of � makes the test sensitive to a broad family
of alternatives.

Table 1 Values of the coefficients

ck, j = c j,k = ∫ ∞
−∞

∫ ∞
−∞[(|
(y) − 
(x)| − .5)2 + .25]h j(x)hk(y)d
(x)d
(y).

The function h j is the j-th normalized Hermite polynomial, and 
 is the standard normal
distribution function

i j c j,k j k c j,k j k c j,k

0 0 0.3333333 3 3 0.0137881 6 6 0.0064284
0 ≥1 0.0000000 3 5 −0.0099516 6 8 −0.0049521
1 1 0.0246214 3 7 0.0069702 6 10 0.0037782
1 3 −0.0175302 3 9 −0.0048125 7 7 0.0049669
1 5 0.0114719 3 11 0.0032963 7 9 −0.0039947
1 7 −0.0073017 4 4 0.0119114 7 11 0.0031530
1 9 0.0045937 4 6 −0.0082846 8 8 0.0041280
1 11 −0.0028759 4 8 0.0058122 8 10 −0.0033748
2 2 0.0306294 4 10 −0.0040844 9 9 0.0034264
2 4 −0.0176839 5 5 0.0078756 9 11 −0.0028673
2 6 0.0107621 5 7 −0.0060138 10 10 0.0029308
2 8 −0.0067113 5 9 0.0045022 11 11 0.0025296
2 10 0.0042450 5 11 −0.0033270 j + k odd 0.0000000
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4.2 Comparison of the Performances of the Classical t-Test
and the Test Based on Qn

A standard way to test δ = 0 is to apply the t-test to the conditional maximum
likelihood estimator δ̂, obtained from the last component of

(
φ̂

δ̂/
√

n

)

=
( X trX X tr X p+1

Xtr
p+1X Xtr

p+1 X p+1

)−1 ( X tr

Xtr
p+1

)

X.

A computation based on plim 1
nX trX = � and the Yule–Walker equations

show that the asymptotic variance of δ̂ is one. Therefore the two-sided t-test is

Fig. 2 Plots of the normalized accumulated sums of residuals z′
n(t), z∗

n(t), 0 ≤ t ≤ 1
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Table 2 Application to Wolfer’s sunspot numbers: values of Q�
n (n = 176, � = 11, p = 1, 2, . . . , 16),

and approximated p-values obtained by comparing with the asymptotic law

p 1 2 3 4 5 6 7 8

Q�
n 22.88 2.14 0.20 0.04 1.60 1.77 2.74 1.12

p-value 0.0000 0.015 0.713 0.997 0.038 0.028 0.005 0.091

p 9 10 11 12 13 14 15 16

Q�
n 1.29 1.14 0.13 0.13 0.17 0.41 0.87 0.31

p-value 0.066 0.087 0.848 0.852 0.769 0.408 0.148 0.526

asymptotically equivalent to a test with rejection region (Z + δ)2 >constant, with
Z standard Gaussian, and hence the comments at the end of Section 2 apply.

4.3 An Example

In order to illustrate the performance of the test based on the transformed process,
we apply it to the series of 176 sunspot numbers analysed by Anderson (1971).

Figure 2 compares the plots of accumulated sums of the residuals z′
n(t) =

1√
n

∑[(n+1)t]
i=1 Ẑi and the functional statistic z∗

n(t) introduced in Section 4.1. In the
diagrams at the left-hand side the polygonal lines join the points (i/n, z′

n(i/n)), i =
0, 1, . . . , n, and apparently do not behave significatively different from a Brownian
bridge. On the right-hand side, the polygonals join the points (i/n, z∗

n(i/n)), i =
0, 1, . . . , n, and show how the accumulated reordered residuals corrected for the
mean exhibit a correlation between Ẑi and Xi−p−1, in the case p = 1. The graphics
show clearly that the AR(1) model should be rejected.

Table 2 shows the values computed for Q11
176 and p = 1, . . . , 16 and the p-values

corresponding to the asymptotic distribution of Qn under “δ = 0”. This corroborates
the conclusion obtained from the graphs, and furthermore, suggests to adopt at least
the AR(3) model to fit the data.

Remark In order to perform the tests, it is advisable to obtain the actual distribution
for finite samples by Monte Carlo simulation.

5 Comments on the Statements in Section 3 and Sketch of Proof of Theorem 1

Theorems 2 and 3 help us to establish the notation. They contain and apply results
not essentially different of other found in the statistical literature (see for instance
Brockwell and Davis 2002; Koul 2002). Then Corollary 1 can be proved by estab-
lishing that a copy of ζ̂n converging uniformly to a copy of ζ (that is, a Skorokhod
representation) leads to copies of the ζ ∗

n that converge uniformly to a copy of the
stated limit. These considerations motivate no further comments on their proofs.

Theorem 1 is the main convergence result, supporting the application of the
general procedure described in Section 2. There is a much more general result in
Koul and Stute (1999) that can be applied to provide a similar convergence result for
nonlinear AR models of order one under suitable assumptions on the model and its
innovations. Notwithstanding, we develop here a sketch of the proof of Theorem 1
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in our restricted context of a stationary model with Gaussian innovations, because in
this particular case no further assumptions are needed.

We split the proof in three steps.

Step 1 The first- and second-order moments of ζn(t) and ξ(t) are the same.
Introduce the indicator process U(t), a n-vector with components Ui(t) =
(1{Xi−p−1≤√

γ0
−1(t)})i=1,2,...,n, and write ζn(t) = 1√
n ZtrU(t). The expectation of

ζn is zero, because each Zi is independent of Ui(t), and the covariance
Eζn(s)ζn(t) is the common value for all i of

EZ 2
i Ui(s)Ui(t) = P{Xi−p−1 ≤ √

γ0(

−1(s) ∧ 
−1(t))} = s ∧ t.

Step 2 The sequence ζn(t) converges fi. di. to the Wiener process ξ(t).
In view of Step 1, it suffices to verify that the limiting distribution of
finite dimensional vectors (ζn(t1), . . . , ζn(tk)) with t1, . . . , tk arbitrarily chosen
in (0, 1) is Gaussian, and this can be done by applying Theorem 5.1 in
Serfling (1968).

Step 3 The sequence ζn(t) is tight.
The tightness of the sequence ζn(t) can be verified by applying the moment
inequality criterion in Billingsley (1999, Theorem 13.5). We shall show that
for 0 ≤ t1 < t < t2 ≤ 1, the expectation

E(ζn(t) − ζn(t1))2(ζn(t2) − ζn(t))2 (15)

is bounded by (G(t2) − G(t1))2 for a bounded and increasing function G.

We introduce the notation

Ui(t1, t2) = 1{√γ0
−1(t1)<Xi−p−1≤√
γ0
−1(t2)}

write the expectation (15) as a sum in four indices

1

n2

∑

h,i, j,k

EZhUh(t1, t)ZiUi(t1, t)Z jU j(t, t2)ZkUk(t, t2).

and notice that the terms with one of the indices greater than the other three have
expectation zero because the corresponding Z is independent of the other factors in
that term. The expression reduces then to a sum in three indices, by equating two of
them, and stating that the remaining two are not larger.

Since the terms with i = j, i = k, h = j, h = k are zero, the nonvanishing terms
correspond to i = h > j, k and i, h < j = k, so that Eq. 15 can be written, with a
change of indices, and replacing the independent factor Z 2

i by its expectation, as
the sum of

1

n2

∑

i

EUi(t1, t)

⎛

⎝
∑

j<i

Z jU j(t, t2)

⎞

⎠

2

(16)

and the analogous expression obtained by interchanging the intervals (t1, t) and (t, t2).
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In order to establish the required bound, it will be enough to verify that for any i,
the inequality

EUi(t, t2)

⎛

⎝ 1√
n

∑

j<i

Z jU j(t1, t)

⎞

⎠

2

< (F(t2) − F(t1))1+α (17)

holds for some bounded increasing function F and a positive α, or, since the left hand
side of Eq. 17 is the sum of

1

n
EUi(t, t2)

∑

j<i

Z 2
j U j(t1, t) (18)

and

2EUi(t, t2)
1

n

∑

j<i

Z jU j(t1, t)
∑

k< j

ZkUk(t1, t), (19)

it suffices with establishing bounds as the one in Eq. 17 for Eqs. 18 and 19.
Let us split the remainder of the proof in several lemmas.

Lemma 1 If
(

X
Y

)

∼Normal
((

0
0

)

,

(
1 r
r 1

))

and 0 < ρ < 1, then there exist increas-

ing and bounded functions Fh,ρ(x), h = 0, 1, 2, . . . such that the inequalities

EX2h1{x1<X<x2}1{x1<Y<x2} < (Fh,ρ(x2) − Fh,ρ(x1))
2 (20)

hold uniformly on |r| ≤ ρ < 1.

Remark Let 
2h(x) = ∫ x
−∞ x2hϕ(x)dx (and in particular 
0 = 
). The functions

defined by

Fh,ρ(x) = (1 + ρ)h+1

4
√

1 − ρ2(1 − ρ)
h+1

2

(


2h

(
x√

1 + ρ

)

+ 


(
x√

1 + ρ

))

(21)

satisfy Eq. 20.

Lemma 2 There exists a constant C such that the expression (18) is bounded by
C(F2,ρ(
−1(t2)) − F2,ρ(
−1(t1)))2, where F2,ρ is the bounded increasing function
def ined by Eq. 21 and ρ = maxi �= j |EXi X j/γ0|.

Lemma 3 There exist a constant C1 and ρ1, 0 < ρ1 < 1, such that the expression (19)
is bounded by C1[(F2,ρ1(t2) − F2ρ1(t1))

2 + (F0,ρ1(t2) − F0ρ1(t1))
2], where F2,ρ1 , F0,ρ1 are

def ined by Eq. 21.

These three lemmas imply that Eq. 15 is bounded by a sum of three terms, each
of which is the squared increment of an increasing and bounded function. It is plain
that the sum of three (or any finite number of) such terms can be expressed as the
squared increment of a new increasing and bounded function, so that this ends the
verification of the tightness.
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Sketch of the proof of Lemma 1 The joint density

ϕX,Y(x, y) = 1

2π
√

1 − r2
exp

(

− 1

2(1 − r2)
(x2 + y2 − 2rxy)

)

of the random variables X, Y is bounded by 1√
1−r2 ϕ(x/

√
1 + |r|)ϕ(y/

√
1 + |r|) and

therefore

EX2h1{x1<X<x<Y<x2} ≤ 1√
1 − r2

∫ x

x1

(x′)2h
ϕ(x′/

√
1 + |r|)dx′

∫ x2

x
ϕ(y/

√
1 + |r|)dy

≤ (1 + |r|)h+1

√
1 − r2

∫ x/
√

1+|r|

x1/
√

1+|r|
(x′)2h

ϕ(x′)dx′
∫ x2/

√
1+|r|

x/
√

1+|r|
ϕ(y)dy

= (1 + |r|)h+1

√
1 − r2

(


2h

(
x2√

1 + |r|
)

− 
2h

(
x1√

1 + |r|
))

×
(




(
x2√

1 + |r|
)

− 


(
x1√

1 + |r|
))

. (22)

The derivative ∂
∂x
2h(

x√
1+|r| ) = ( x√

1+|r| )
2hϕ( x√

1+|r| )
1√

1+|r| is uniformly bounded by

( x√
1−ρ

)2hϕ( x√
1+ρ

)/
√

1 − ρ in |r| ≤ ρ, so that


2h

(
x2√

1 + |r|
)

− 
2h

(
x1√

1 + |r|
)

≤
∫ x2

x1

(
x√

1 − ρ

)2h

ϕ

(
x√

1 + ρ

)
dx√
1 − ρ

=
(√

1 + ρ√
1 − ρ

)2h+1

×
(


2h

(
x2√

1 + ρ

)

− 
2h

(
x1√

1 + ρ

))

holds for all |r| ≤ ρ and in particular, with h = 0,




(
x2√

1 + |r|
)

− 


(
x1√

1 + |r|
)

≤
√

1 + ρ√
1 − ρ

(




(
x2√

1 + ρ

)

− 


(
x1√

1 + ρ

))

.

From Eq. 22 we conclude that EX2h1{x1<X<x<Y<x2} is bounded by

(1 + ρ)2h+2

√
1 − ρ2(1 − ρ)h+1

(


2h

(
x2√

1 + ρ

)

− 
2h

(
x1√

1 + ρ

))

×
(




(
x2√

1 + ρ

)

− 


(
x1√

1 + ρ

))

and hence by (Fh,ρ(x2) − Fh,ρ(x1))
2 with Fh,ρ(x) given by Eq. 21. ��

Sketch of the proof of Lemma 2 The sum (18) has less than n terms, hence it suffices
to verify that the stated inequality is satisfied by each term

EUi(t, t2)Z 2
j U j(t1, t), j < i. (23)

By introducing the standard Gaussian variables X = Xi−p−1/
√

γ0, Y =
X j−p−1/

√
γ0, and Z = Z j with covariances EXY = r, EX Z = s, EY Z = 0, Eq. 23
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can be written as E1{x1<X<x}1{x<Y<x2} Z 2 with x1 = 
−1(t1), x = 
−1(t), x2 = 
−1(t2).
The covariance r is bounded in absolute value by ρ = maxi �= j |EXi X j/γ0| < 1.

Now we express Z as a linear combination aX + bY + cW of X, Y and a new
standard Gaussian variable W independent of X, Y and apply Lemma 1 to each term
in the right-hand side of the inequality

E1{x1<X<x}1{x<Y<x2} Z 2 ≤ 3a2E1{x1<X<x2}1{x1<Y<x2} X2

+ 3b 2E1{x1<X<x2}1{x1<Y<x2}Y
2

+ 3c2E1{x1<X<x2}1{x1<Y<x2}W
2

thus providing a bound for Eq. 23 with the required format. ��

Sketch of the proof of Lemma 3 The expression (19) is the sum of less than n terms
2EUi(t, t2)Z jU j(t1, t)

∑
k< j ZkUk(t1, t), j < i ≤ n divided by n, and each term can be

written as
∑

k< j

2EZ jZk1{x≤Yi≤x2}1{x1≤Y j≤x}1{x1≤Yk≤x}, (24)

where Yh = Xh−p−1/
√

γ0, x1 = 
−1(t1), x = 
−1(t) and x2 = 
−1(t2). The statement
will be proved by showing that Eq. 24 admits a bound as the required one, uniformly
in i, j. ��

Let us introduce the notations sh = EYh Z0 and use ρh = EYhY0. Because the
model is causal, sh = 0 for h ≤ p. Moreover, the stationarity implies

∞∑

h=−∞
|ρh| < ∞,

∞∑

h=−∞
|sh| =

∞∑

h=p+1

|sh| < ∞. (25)

The centred vector

⎛

⎜
⎜
⎜
⎜
⎝

Yi

Y j

Yk

Z j

Zk

⎞

⎟
⎟
⎟
⎟
⎠

has variance

⎛

⎜
⎜
⎜
⎜
⎝

1 ρi− j ρi−k si− j si−k

ρi− j 1 ρ j−k 0 s j−k

ρi−k ρ j−k 1 0 0
si− j 0 0 1 0
si−k s j−k 0 0 1

⎞

⎟
⎟
⎟
⎟
⎠

.

We write now the last two components of that vector as linear combinations

Z j = a jYi + b jY j + c jYk + d jW + e jW j (26)

Zk = akYi + b kY j + ckYk + dkW + ekWk (27)

of the standard Gaussian variables Yi, Y j, Yk, W, W j, Wk with the last three mutually
independent and independent of the former ones, and compute the expectation

2EZ jZk1{x≤Yi≤x2}1{x1≤Y j≤x}1{x1≤Yk≤x}

= 2E(a jYi + b jY j + c jYk)(akYi + b kY j + ckYk)

× 1{x≤Yi≤x2}1{x1≤Y j≤x}1{x1≤Yk≤x}

+ d jdkE1{x≤Yi≤x2}1{x1≤Y j≤x}1{x1≤Yk≤x}.
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By using repeatedly the estimate 2|YhYl| ≤ Y2
h + Y2

l , and introducing σ j = |a j| +
|b j| + |c j|, σk = |ak| + |b k| + |ck| , this leads to the estimate

2E|Z jZk|1{x≤Yi≤x2}1{x1≤Y j≤x}1{x1≤Yk≤x}

≤ [|a j|σk + |ak|σ j]EY2
i 1{x1≤Yi≤x2}1{x1≤Yk≤x2}

+ [|b j|σk + |b k|σ j]EY2
j 1{x1≤Y j≤x2}1{x1≤Yk≤x2}

+ [|c j|σk + |ck|σ j]EY2
k1{x1≤Yi≤x2}1{x1≤Yk≤x2}

+ |d jdk|E1{x1≤Yi≤x2}1{x1≤Yk≤x2}.

Lemma 1 and the fact that |ρh| ≤ ρ = max−∞<h<∞ |ρh| < 1 imply that each of the
four expectations is smaller that the increment of a bounded function uniformly in
i, j, k and hence the conclusion of the lemma is obtained by verifying that the sums
of coefficients

∑

k< j

[|a j|σk + |ak|σ j],
∑

k< j

[|b j|σk + |b k|σ j],
∑

k< j

[|c j|σk + |ck|σ j],
∑

k< j

|d jdk|

are uniformly bounded.
Some cumbersome but straightforward computations show that �i, j,k :=

det Var(Yi, Y j, Yk) = 1 − ρ2
i− j − ρ2

i−k − ρ2
j−k + 2ρi− jρi−kρ j−k, and the coefficients in

Eqs. 26 and 27 are

a j = si− j(1 − ρ2
j−k)/�i, j,k

b j = si− j(ρi−kρ j−k − ρi− j)/�i, j,k

c j = si− j(ρi− jρ j−k − ρi−k)/�i, j,k

ak = si−k(1 − ρ2
j−k)/�i, j,k + s j−k(ρi−kρ j−k − ρi− j)/�i, j,k

b k = si−k(ρi−kρ j−k − ρi− j)/�i, j,k + s j−k(1 − ρ2
i−k)/�i, j,k

ck = si−k(ρi− jρ j−k − ρi−k)/�i, j,k + s j−k(ρi− jρi−k − ρ j−k)/�i, j,k

d jdk = si−k(−si− j(1 − ρ2
j−k))/�

2
i, j,k + s j−k(−si− j(ρi−kρ j−k − ρi− j))/�

2
i, j,k

The expressions involving the correlations ρh are all absolutely bounded by 2, the
absolute values of the correlations si− j between the X’s and the Z ’s are trivially
bounded by 1, and the determinant of the variance of any three different standard-
ized Y’s is uniformly bounded off zero, then each term of the sums in Eq. 25 is
absolutely bounded by some constant K, the same for all i, j, k, times |si−k| + |s j−k|,
so that the sums are uniformly bounded.
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