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Box–Cox response transformations for
random effect models

Amani Almohaimeed12, Jochen Einbeck1
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Abstract: For the linear model with random effects of unspecified distribution,
we develop methodology for simultaneous response transformation and estima-
tion of regression parameters. This is achieved by extending the “Nonparametric
Maximum Likelihood” towards a “Nonparametric Profile Maximum Likelihood”
technique. The methods allow to deal with overdispersion as well as two–level
data scenarios.

Keywords: Box–Cox transformation, variance component model, EM algorithm

1 Introduction

For data with a two–level structure, such as longitudinal data, correlation
of responses within upper–level units can be induced by adding a ran-
dom effect zi to the linear predictor xTijβ, with the upper-level indexed by
i = 1, . . . , r, and the lower-level indexed by j = 1, . . . , ni,

∑
ni = n. Condi-

tional on the random effect, the responses yij are independently distributed
with mean function

E(yij |zi) = xTijβ + zi, (1)

which is also known as a variance component model.
The Box–Cox transformation has been widely used in applied data analysis.
The objective of the transformation is to select an appropriate parameter
λ which is then used to transform the responses such that they follow a
normal distribution more closely than the untransformed data. Under the
scenario of model (1), the transformation by Box and Cox (1964) can be
written as

y
(λ)
ij =

{
yλij−1

λ λ 6= 0,
log yij λ = 0

This paper was published as a part of the proceedings of the 33rd Inter-
national Workshop on Statistical Modelling (IWSM), University of Bristol, UK,
16-20 July 2018. The copyright remains with the author(s). Permission to repro-
duce or extract any parts of this abstract should be requested from the author(s).



2 Box–Cox transformations for random effect models

for yij > 0, i = 1, ..., r and j = 1, ...., ni. It is assumed that there is a value
of λ for which

y
(λ)
ij |zi ∼ N(xTijβ + zi, σ

2)

where zi is a random effect with an unspecified mixing distribution g(zi).

Taking account of the Jacobian of the transformation from yij to y
(λ)
ij , the

conditional density function of yij given zi is

f(yij |zi) =
yλ−1
ij√
2πσ2

exp

[
− 1

2σ2
(y

(λ)
ij − xTi β − zi)2

]
.

The goal is to estimate λ and β under the presence of the random effect.

2 Estimation

Under the NPML estimation approach, the distribution of the random ef-
fect will be approximated by a discrete distribution at mass points z1, . . . , zK ,
which can be considered as intercepts for the different unknown subgroups
on the upper level. Hence, the likelihood in relation to the original obser-
vations can be approximated as (Aitkin et al, 2009)

L(λ, β, σ2, g) =

r∏

i=1

∫ 

ni∏

j=1

f(yij |zi)


 g(zi)dzi ≈

r∏

i=1

K∑

k=1

πkmik, (2)

where mik =
∏ni
j=1 f(yij |zk). Defining indicators Gik = 1 if case i stems

from cluster k and 0 otherwise, the complete log–likelihood takes the shape

`∗ = logL∗ =
r∑

i=1

K∑

k=1

[Gik log πk +Gik logmik]

where L∗ =
∏r
i=1

∏K
k=1(πkmik)Gik . Of course, `∗ depends on λ. For fixed

λ, one proceeds via a standard EM algorithm, where in the E-step expec-
tations of Gik are obtained via wik = πkmik∑

` π`mi`
, and in the M-step the

expected complete likelihood is maximized, yielding

β̂(λ) =




r∑

i=1

ni∑

j=1

xijx
T
ij



−1

r∑

i=1

ni∑

j=1

xij

(
y

(λ)
ij −

K∑

k=1

wikẑk

)
,

σ̂2(λ) =

∑r
i=1

∑K
k=1 wik

[∑ni
j=1(y

(λ)
ij − xTij β̂ − ẑk)2

]

∑r
i=1 ni

,

ẑ
(λ)
k =

∑r
i=1 wik

[∑ni
j=1(y

(λ)
ij − xTij β̂)

]

∑r
i=1 niwik

, π̂
(λ)
k =

∑r
i=1 wik
r

.
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Replacing the results into mik and then into the right–hand term of equa-
tion (2) we get the non–parametric profile likelihood function LP (λ), or
its logarithmic version `P (λ) = log(LP (λ)). The non–parametric profile
maximum likelihood (NPPML) estimator is therefore given by

λ̂ = arg max
λ

`P (λ),

which can be found through a grid search over λ.

3 Example: Oxboys data

In order to demonstrate this methodology, we consider a data set available
as part of the R package nlme (Pinheiro et al, 2017), which consists of
measurements of age and height for 26 boys in Oxford, yielding a total of
234 observations. The response variable height is defined as the height of
the boy in (cm), associated with the covariate age that is the standardized
age (dimensionless). We fitted a variance component model

E(yij |zi) = agej + zi

where zi is boy–specific random effect and agej is the j-th standardized
age measurement, j = 1, . . . , 9, which is equal for all boys for fixed j.

FIGURE 1. For the Oxboys data, a grid search over λ, with K = 6.

From Figure 1, it can be seen that the best estimate of λ that maximizes
`P (λ) is λ̂ = −0.25, suggesting that some transformation need to be carried
out to make the response distribution more normal. The results before and
after applying the response transformation are summarized in Table 1. As
can be seen from this table, comparing the Akaike Information Criterion
(AIC) values of the untransformed model fit (λ = 1) and our method
using K = 5, 6 and 7, respectively, showed a better performance of the
NPPML approach. In other words, using the response after applying the
transformation leads to a better fitting model than the original data.



4 Box–Cox transformations for random effect models

TABLE 1. Comparison of results from original & transformed data, using
K = 5, 6 and 7

K = 5 K = 6 K = 7

λ̂ = −0.51 λ = 1 λ̂ = −0.25 λ = 1 λ̂ = −0.25 λ = 1

−2 logL 1119.3 1132.8 1026.2 1048.3 1024.2 1132.8
AIC 1141.3 1154.9 1052.2 1074.3 1054.2 1162.9

4 Simulation Study

We are interested in examining the method’s ability to estimate the true pa-
rameter values. Therefore, we first simulate data by applying the Box–Cox
transformation ‘backwards’ to a dataset that follows a normal distribu-
tion using a set of λ values. Specifically, for each of four given values λ`,
` = 1, 2, 3, 4, we generate 1000 datasets with 100 observations as follows,

ζij` = ỹ(ηij , λ`), i = 1, ..., 20, j = 1, ..., 5 (3)

ỹ(ηij , λ`) =

{(
1 + λ`ηij

)λ` (λ` 6= 0),

eηij (λ` = 0)

ηij = 3 xij + zi + εij

xij ∼ U(−4, 4)

εij ∼ N(0, 0.5)

λ1 = 0, λ2 = 0.5, λ3 = 1, λ4 = 2.

Note that ỹ(·) denotes the ‘backward’ Box–Cox–transformation, and that
the generated data possess a variance component structure due to the ran-
dom effect terms zi, which are generated by a discrete distribution with
mass-points zk = (15, 20, 30, 35) and masses πk = 1/k, k = 1, ..., 4.
In the estimation step, we estimate λ and β simultaneously, yielding for
each (true) value of λ a total of 1000 estimates of λ̂ and β̂. Figure 2 shows
the boxplots for the regression and transformation parameter estimates,
respectively. The reference lines in the figures indicate the actual values
of the parameters. It is clear that the median of the estimated β and λ is
approximately equal to the true value in each plot. There are some outliers
in each of the plots; in fact the outliers in the transformation estimates
cause the outliers in the regression estimates as they shift the scale of
the linear predictor. The means and medians of the estimated β and λ
parameters are also provided in Table 2; we see that the medians for the
transformation parameters sit exactly at their true values, and those of the
regression parameters approximately so.
We also investigate the standard errors of the regression parameter esti-
mates. An empirical but robust measure of spread of the estimated β can
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be obtained by computing the IQR of (the non–logarithmic version of)
each of the four columns in Figure 2 (top). Via normal reference, the IQR
can be mapped back to the scale of the standard deviations by division
through 1.349. We call the resulting robust estimate of standard deviation
RESD(β̂). Table 2 displays RESD(β̂) values along with means and medians

of EM–based standard errors, SE(β̂), which were obtained by extraction
from the model fitted in the last M–step. It is conceptually clear that such
EM–based standard errors cannot be ‘correct’ as they ignore the variation
caused by the EM algorithm itself, but we see from Table 2 that they are
still satisfyingly close to their empirical counterparts.

TABLE 2. Summary of simulation results.

True values λ = 0 λ = 0.5 λ = 1 λ = 2
β 3 3 3 3

Mean(λ̂) 0 0.5026 1.003 2.0049

Median(λ̂) 0 0.5 1 2

Mean(β̂) 2.9996 3.0901 3.0770 3.1090

Median(β̂) 3.0003 3.0001 3.0003 3.0006

RESD(β̂) 0.0246 0.0251 0.0255 0.0335

Mean(ŜE(β̂)) 0.0256 0.0267 0.0264 0.0268

Median(ŜE(β̂)) 0.0214 0.0214 0.0214 0.0214

5 Implementation

The methodology is implemented in R package boxcoxmix (Almohaimeed
and Einbeck, 2017) which is available on CRAN. This package features
further variants and capabilities which have not been introduced here, such
as a version for simple ‘overdispersion’ models (where ni ≡ 1), and several
routines to select the starting points for the EM algorithm.

Acknowledgments: The first author is grateful to Qassim University for
financial support.
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Fitting a spatial-temporal rainfall model
using Approximate Bayesian Computation
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Abstract: We fit a stochastic spatial-temporal model to high-resolution rainfall
radar data for a single rainfall event. Approximate Bayesian Computation (ABC)
is used to fit a model of Cox, Isham and Northrop, previously fitted using the
Generalised Method of Moments (GMM). We then show that ABC readily adapts
to more general, and thus more realistic, variants of the model. The Simulated
Method of Moments (SMM) is used to initialise the ABC fit.

Keywords: Spatial-temporal; spatiotemporal; rainfall; Approximate Bayesian
Computation.

1 Introduction

The Cox-Isham-Northrop (C-I-N) rainfall model is a spatial-temporal stochas-
tic model for a rainfall event, constructed using a cluster point process. The
cluster process is constructed by taking a primary process, called the storm
arrival process, and then attaching to each storm center a finite secondary
point process, called a cell process. To each cell center we then attach a
rain cell, with an associated area, duration and intensity. The storm and
cell centers all share a common velocity. The total rainfall intensity at point
(x, y) and time t is then the sum of the intensity at (x, y) of all cells active
at time t. (Cox & Isham 1988, Northrop 1998.)
The storm arrival process is taken to be a Poisson process in R2 × [0,∞)
with homogeneous rate λ. Let v = (vx, vy) be the velocity of the rainfall
event, so if a storm center arrives at (u, s) then at time s + t it will be at
(u + tv, s+ t). Storm durations are random with an exp(γ) distribution.
While a storm is active it produces cells at a rate β in time, starting with
a cell at the moment the storm center begins. If the storm arrives at (u, s)

This paper was published as a part of the proceedings of the 33rd Inter-
national Workshop on Statistical Modelling (IWSM), University of Bristol, UK,
16-20 July 2018. The copyright remains with the author(s). Permission to repro-
duce or extract any parts of this abstract should be requested from the author(s).



8 Fitting a rainfall model using ABC

and produces a cell at time s + t, the cell will be centered at u + tv + w,
where w comes from a Gaussian distribution with mean 0 and covariance
Σ. The cell centre then also moves with velocity v. We parameterise Σ
using its size σ2, eccentricity e and orientation Θ. σ2 is assumed to have
an inverse-gamma distribution, where 1/σ2 has mean ξµ and coefficient of
variation ξCV .
Individual cells have random durations, distributed as exp(η), and random
sizes. Rain cells are elliptical, with the same eccentricity e and orientation
Θ as the storms. The size is given by the major axis, which is distributed as
a Γ(α1, α2). Note that we can re-express α2 using α1, e, and µA (the mean
area of a rain cell). The intensity of a rain cell is constant over the shape
and duration of the cell, with an exponential distribution mean µX . The
displacements, durations, sizes, and intensities of a cell are all independent,
and independent of other cells.
The C-I-N model is stationary and is used to model the ‘interior’ of a rainfall
event. We will suppose that we have observations of the rainfall in some
finite space-time window A× [0, T ], where T is chosen so that the leading
and trailing edges of the rainfall event are not observed. For this study
we used radar data collected at Laverton, Melbourne, on 24th September
2016, calibrated by the Australian Bureau of Meteorology using rain-gauge
data. The data gives rainfall intensity averaged over 1 km square pixels
every 6 minutes, over an area of 180× 180 pixels for a period of 3 hours. A
contour plot of the spatial rainfall intensity at a single time-point is given
in Figure 1(a).
Because it has an intractible likelihood function, the C-I-N model has
been fitted using the Generalized Method of Moments (GMM) (Wheater
et al. 2006). The puprose of this paper is firstly to show that Approximate
Bayesian Computation (ABC) can be used to fit a Bayesian version the
C-I-N model, and secondly to use ABC to fit a generalisation of the C-I-
N model that is too much for GMM to cope with. GMM fitting matches
theoretical and observed moments of the process, and thus is restricted to
moments for which you have an analytic expression. ABC fitting compares
the observed process to simulations, and thus places no restrictions on the
statistics used to compare them. The penalty we pay for this increased
flexibility is an increase in computational time.

1.1 Approximate Bayesian Computation

ABC was introduced by Pritchard et al. (1999), and was later extended
to incorporate Markov Chain Monte Carlo (MCMC) by Marjoram et al.
(2003), or alternatively Sequential Monte Carlo (SMC) (Sisson et al. 2007
and 2009, Beaumont et al. 2009). We will use the ABC-MCMC methodol-
ogy.
We suppose that we have an observation D from some model f(·|θ), de-
pending on parameters θ, and that we are able to simulate from f . Let π
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FIGURE 1. (a) Calibrated rainfall radar data, courtesy of the Australian Bu-
reau of Meteorology. (b) Simulation from the C-I-N model fitted using ABC. (c)
Simulation from the modified C-I-N model.

be the prior distribution for θ and S = S(D) a vector of summary statis-
tics for D, then ABC generates samples from f(θ|ρ(S(D∗), S(D)) < ε),
where D∗ ∼ f(·|θ), θ ∼ π, and ρ is some distance function. If S is a suf-
ficient statistic, then as ε → 0 this will converge to the posterior f(θ|D).
ABC-MCMC adds a proposal chain with density q and a rejection step, to
generate a sample {θi}. The algorithm is as follows:

FOR i = 1 to N

1 Given current state θi propose a new state θ∗ using q(·|θi)
2 Put α = min {1, (π(θ∗)q(θi|θ∗))/(π(θi)q(θ

∗|θi))}
3 Go to 4 with probability α, otherwise set θi+1 = θi and return to 1

4 Simulate data D∗ ∼ f(·|θ∗)
5 If ρ(S(D∗), S(D)) ≤ ε then set θi+1 = θ∗, otherwise set θi+1 = θi

END FOR

Note that the MCMC rejection at step 3 comes before the ABC comparison
in step 5. This is to avoid unnecessarily running the simulation in step 4.
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2 Fitting the C-I-N model using ABC

Following Wheater et al. (2006), the velocity v, eccentricity e and orienta-
tion Θ were all estimated ad hoc using temporal and spatial autocovariance
estimates, and then fixed.
The remaining parameters were transformed to reduce dependence and
skewness. For the ABC step we used log(λ/γ), log(λγ), log(β/η), log(βη),
log(µX/µA), log(µXµA), log(α1), log(ξµ), and log(ξCV ). Vague normal pri-
ors are used for all the transformed parameters, and for the proposal chain
we used a random walk with N(0, 0.22I) steps.
The choice of summary statistics S and distance metric ρ plays a large part
in the performance of ABC. Ideally S should be sufficient, but certainly it
should reflect those aspects of the real process considered most important.
However choosing S too large reduces the efficiency of ABC, though this
can be mitigated to some extent using post hoc analysis of the significance
of each component (Beaumont et al. 2002).
We used 23 summary statistics:

— The overall mean and standard deviation of rainfall, taken over all
pixels and all times.

— The spatial-temporal auto-correlation, with lags of (x, y, t), where x
and y are measured in pixels and t is in units of 6-minutes. We take
t = 0, x ∈ {−1, 0, 1}, y ∈ {−1, 0, 1}, and t = 1, x ∈ {−1, 0, 1}+vx, y ∈
{−1, 0, 1}+ vy. Here vx and vy are the velocity components, in units
of pixels per 6-minutes. Note that the lag (0, 0, 0) auto-correlation is
not used because it is just variance.

— The probability of an arbitrary pixel and time being dry.

— The ratio of dry/wet area and mean and standard deviation of wet
area, averaged over time.

For the distance function ρ we used a weighted sum of squares ρ(S(D∗), S(D)) =∑
i wi(S

∗(i) − S(i))2, where S∗(i) and S(i) are the i-th components of
S(D∗) and S(D) respectively. We found empirically, as have other authors,
that a good choice is to take wi inversely proportional to the variance of
S∗(i) under the posterior.
Plots of our fitted posteriors are given in Figure 2, and a simulation from
the fitted model is given in Figure 1(b), for a single time-point. For the sim-
ulation the posterior means were used as point estimates for the parameter
values.

2.1 Starting ABC using SMM

The Simulated Method of Moments (SMM) is a variant of the Generalised
Method of Moments (GMM) that uses Monte-Carlo estimates of moments,
rather than analytic expressions (McFadden 1989). Thus, like ABC, using
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FIGURE 2. Some nice looking posteriors. Priors are given by the red dashed
lines. See the text for details.

SMM we have much more freedom in the choice of moments used to fit the
model to the data.
When applying ABC, we found it advantageous to ‘jump-start’ the algo-
rithm by choosing the initial parameter selection θ0 using an SMM fit,
using the same summary statistics S that we chose for the ABC fitting.
There are two main benefits to this step. The first is that if θ0 has very
small posterior probability, then ABC-MCMC requires a prohibitively large
burn-in period. The second is that it gives us a distribution for S(D∗) that
we can use to estimate the weights wi of the distance function ρ.
Previous authors have suggested using a separate ABC step to estimate θ;
we found that using SMM instead requires much less computation time.

3 Extending the C-I-N model

There are many ways in which the C-I-N model can be extended. If you
do so, however, GMM is no longer suitable for estimation, as it becomes
too difficult to obtain analytic expressions for the moments. Fortunately
this does not apply to ABC, which can be applied much as before. For
the example below we did not even have to modify the set of summary
statistics S.



12 Fitting a rainfall model using ABC

We leave a comprehensive generalisation of the C-I-N model to future work,
and just consider the following modifications:

— Randomised cell eccentricity.

— Rainfall intensity that increases continuously from the edge to the
centre of each cell, rather than acting as a step function.

— Heavy tailed distributions for cell intensity and area.

— Correlated cell intensity and area.

Using the posterior distribution of S(D∗) we can show that the modified
model gives a better fit. A simulation from the fitted model is given in
Figure 1(c), for a single time-point; qualitatively it also looks to be doing
a better job
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1 Introduction

This work is interested in Morris’ extension method (Campolongo and
Braddock(1999)) to select and classify the influential pairs of model in-
puts at low computational cost. The study of the influence of the combined
variation of parameters is important in various fields, especially in civil
engineering. For instance, the Morris’ extension method is implemented
in a study of building energy models, to evaluate the relative influence of
pairs of model inputs that reflect the coupling between phenomena such as
occupation, microclimate and envelope of building (Menberg et al. (2016),
Sanchez et al. (2014)). However, there is a lack of studies on the crucial
choice of the adequate number of trajectories to obtain stable results to (i)
distinguish groups of influential and non-influential pairs of model inputs
and (ii) rank the pairs of parameters according to their relative important
influence. This work is a contribution to the assessment of the robustness of
results of the Morris’ extension method through an illustration on a com-
plex civil engineering model. A comparison is made with total interaction
indices of Sobol ((Fruth et al. (2014)), which are useful to determine and
quantify the total contribution of the influence of combined variations of
parameters (including interactions of order > 2). The stability of screening
and ranking results provided by the Morris’ extension method is studied by
simulating indices based on the median of mixed elementary effects (MEE),
compared with classical indices based on the mean of MEE.

2 Sensitivity analysis methods

Morris’ extension method. Consider a given value of the input vector x of
the input parameter space Qn and the model y = f(x). The influence of
combined variations of the inputs Xi and Xj on the output y is studied by
calculating the following partial derivative:

∂2f(x)

∂xi∂xj
= ddij(x) = EEij−

1

∆i
Ei−

1

∆j
Ej ,

with Ei = ∂f(x)/∂xi and EEij(x) = [f(x + ei∆i + ej∆j) − f(x)]/∆i∆j ,
1 ≤ i ≤ j ≤ n, where ∆ = (∆1, . . . ,∆n) is a predetermined vector such
that x+ ei∆i + ej∆j ∈ Qn and f(x+ ei∆i + ej∆j) = f(x1, . . . , xi−1, xi +
∆i, xi+1, . . . , xj−1, xj+∆j , xj+1, . . . , xn). The MEE ddij are calculated us-
ing the sampling strategy based on the Handcuffed prisoners which aims to
extract a sample of r elements dd1

ij , . . . , dd
r
ij , for each input pair, in order to

estimate descriptive statistics of MEE (Campolongo and Braddock(1999)).
Then, the following indices are calculated: the median γ∗ij of absolute values
|ddij(l)| and their standard deviation σγ in relation to γ∗ij . A comparison

is made with classical indices such as the mean µ∗ij = (1/r)
∑r
l=1 |ddlij | and

standard deviation σµ =
√

(1/r)
∑r
l=1(ddlij − µ∗ij)2 , where r is the number
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of trajectories. The indices γ∗ij and µ∗ij provide information on relative im-
portance of combined influence of a pair of inputs, while σµ and σγ indicate
non-bilinear effect and/or interaction of order ≥ 3.
Total interaction indices of Sobol. The Total Interaction Index (TII) are
based on the decomposition of variance of the model output (Fruth et
al. (2014)). They are estimated using the classical Monte Carlo sampling
method The TII of a pair of inputs (Xi, Xj) is defined as: V superij =∑
I⊇{i,j} VI , with I ⊆ {1, . . . , n}.

3 Application

This application aims to robustly identify the joint influence of environ-
mental and technological factors on service life of concrete structures using
a meta-model of carbonation (detailed in Ta et al. (2016)).
Corrosion model. The studied model calculates the carbonation depth xCO2

in concrete structures as follows:

xCO2
= A
√
t, (1)

with the exposure time t and the carbonation coefficient defined as a func-
tion of environmental parameters (relative external humidity RH, ambient
temperature T , CO2-concentration in the air) and technological parame-
ters (cement content C, water to cement ratio W/C, sand to gravel ratio
S/G, maximum aggregate size Smax, cement type CEM , cement strength
class fcem, concrete cover depth d, initial curing period tc). The service life
tser = d2/A2 of concrete structures is reached when the carbonation depth
xCO2 is equal to the concrete cover depth d in Eq.1.
Results. The Morris’ extension method and the total interaction indices
of Sobol were applied by incrementally increasing the number of trajecto-
ries from 100 to 4600 and size of Monte-Carlo samples from 100 to 9100,
respectively (Figure 1).
The influence of pair (T,W/C) was ranked first showing the combined
action of environmental and technological factors on the service life of con-
crete strcutures. The mean µ∗ij enabled to distinguish groups of influential
and non-influential input pairs (Figure 1(b)), while the median γ∗ij enabled
to prioritize the first most influential input pairs (Figure 1 (c)). The two
sensitivity indices globally revealed the same most influential input pairs
but not the same ranking of their influence. The number of trajectories rreq
required to obtain stable results of the sensitivity indices was higher when
using the mean µ∗ij (rreq ≥ 4600, Figure 1 (b)) than the median γ∗ij (rreq ≈
2600 trajectories, Figure 1 (c)), reflecting the statistical properties of the
median as a more robust indicator. Finally, (i) the indice µ∗ij provided also
information on the total relative importance of input pairs, through similar
ranking of influential input pairs than the Sobol total interaction indices
(Figure 1 (d)), and (ii) non-bilinear effects and / or combined actions of
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FIGURE 1. Indices µ∗ij (a)(b) and γ∗ij (c) of Morris’ extension method and total
interaction indices of Sobol (d), for input pairs of corrosion model (Ta et al.(2016))

order > 2 were indicated by the calculation of ratio σij/µ
∗
ij (> 0.5) for

input pairs (Figure 1(a)).
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Abstract: The Lee-Carter model is an elegant and powerful methodology to
model and forecast mortality based on a log-bilinear form for the hazard func-
tion. We propose a novel extension of the model that overcomes its drawback of
a fixed age-specific rate of mortality improvements. This new approach improves
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The three components are estimated via an iterative series of penalized composite
link models. We illustrate the approach on Swiss male mortality data.
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1 Introduction

Mortality forecasting has received growing attention in recent decades as
worldwide ageing populations pose increasing challenges to the sustainabil-
ity of social security and public health policies. In 1992, Lee and Carter
proposed a seminal methodology to model and forecast mortality hazard
rates, which nowadays is presumably the best known mortality forecast-
ing procedure. Nonetheless, the model has some limitations, the main one
being the assumption of a fixed age-specific rate of mortality improvement.
In the following, we propose a novel extension of the Lee-Carter model
that overcomes this issue by decomposing the hazard of mortality into
three components that operates principally upon childhood, middle and
old ages, respectively. We illustrate the proposed approach on Swiss male
mortality data from the Human Mortality Database (2018).

This paper was published as a part of the proceedings of the 33rd Inter-
national Workshop on Statistical Modelling (IWSM), University of Bristol, UK,
16-20 July 2018. The copyright remains with the author(s). Permission to repro-
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2 The Three-Component Lee-Carter model

We suppose that we have mortality data, deaths, and exposures to the risk
of death, arranged in two matrices, Y = (yij) and E = (eij), each m× n.
We assume that the number of deaths yij at age i in year j follows a Poisson
distribution with mean µij = eij θij , i.e. product of exposures and actual
force of mortality or hazard rate (Brillinger, 1986). In matrix notation, the
Lee-Carter model assumes that the log of the force of mortality, Θ = (θij),
is given by:

ln Θ = α1T

n + β κT (1)

where α and β are m -dimensional vectors describing the average shape of
the age profile and the rate of mortality improvement at age i, respectively,
and κ is a n -dimensional vector capturing the general level of mortality at
each year j.
The assumption of a single shape of mortality improvement over age de-
scribed by β can be often strong in mortality data. To overcome this issue,
we decompose mortality into three components that operates principally
upon childhood, middle and old ages. Each component will be described
by a distinct Lee-Carter model.
We arrange the matrix of deaths by column order into a vector y. Likewise
we arrange the matrix of exposures e = vec(E). Expected values µ can be
written as µ = Cγ with γT = (γC ,γA,γS)T, representing childhood, early-
adulthood and senescent mortality, respectively. The matrix C additively
combines the γi and also incorporates the exposures:

C = 11,3 ⊗ diag(e) . (2)

Each γi ∈ Rmn+ is defined as a component-specific Lee-Carter:

lnγi = vec(αi 1
T

n + βi κ
T

i ) for i = C,A, S . (3)

Hence we call this a Three-Component Lee-Carter (3C-LC) model. More-
over, to avoid irregular patterns in fitted and projected life tables, we en-
force smoothness in the shape of αi, βi and κi.

3 A Composite Link Model approach

The 3C-LC model can be viewed as a Composite Link Model (CLM, Thomp-
son and Baker, 1981) and as a special case of the Sum of Smooth Exponen-
tials model (SSE, Camarda et al., 2016), in which each component follows
the parametric Lee-Carter assumption. Unlike the SSE, each component
of the 3C-LC model is not linear with respect to all unknown parameters.
Nevertheless, we can linearize the system of equations with respect to each
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series of parameters and iteratively solve the following penalized IWLS
algorithm (Eilers, 2007):

(X̆TW̃ X̆ + Pa)ã = X̆TW̃ z̃ , (4)

where X̆ = Ca
γ̃a

µ̃ Xa, W̃ = diag(µ̃) and z̃ = W̃−1(y − µ̃) + η̃a.
We start by fixing all triplets of parameters κi and βi and estimate aT =
(αC ,αA,αS)T. Composite and design matrices for solving (4) are thus
given by:

Cα = [dC(1n ⊗ Im) : dA(1n ⊗ Im) : dS(1n ⊗ Im)]

Xα = I3m (5)

where di = diag[e vec(exp(βi κ
T
i ))] for i = C,A, S.

Analogously, we then fix the other triplets of parameters and we solve (4)
by changing composite and design matrices:

Cβ = Cκ = [uC : uA : uS ]

Xβ = diag[κC ⊗ Im, κA ⊗ Im, κS ⊗ Im] (6)

Xκ = diag[In ⊗ βC , In ⊗ βA, In ⊗ βS ]

where ui = diag[e vec(exp(αi1
T
n ))] for i = C,A, S.

Smoothness of the parameters is achieved by the penalty matrix Pa which is
specific for each triplets of parameters, though it is always a block diagonal
matrix:

P = diag(PaC ,PaA ,PaS )

where Pai = λaiD
T

i Di and Di is the matrix that computes dth-order
differences for the coefficients ai for i = C,A, S. In general, we choose
second order differences, except for αA, whose log-concave shape suggests
using d = 3.
The smoothing parameter λai controls the roughness of the vector ai. To
determine the optimal values of the λai , we minimize the Bayesian informa-
tion criterion (BIC). Minimization is achieved by performing a multidimen-
sional grid search over different combinations of λai . To reduce the com-
putational burden, we assume that the smoothing parameter is the same
within each triplet of parameters, i.e. λaC = λaA = λaS for a = α,β,κ.
However, we do not impose restrictions on λai across different triplets,
i.e. in general λαi 6= λβi 6= λκi .
In demography age 0 is commonly treated differently. We incorporate this
feature allowing discontinuity of the first age of infant mortality in αC
and βC , i.e. the corresponding first coefficient is not penalized. Finally the
choice of the starting values is not as crucial as the non-linearity of the 3C-
LC model would suggest: the parametric structure within each component
ensures convergence of the proposed iterative penalized CLM algorithm.
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4 Swiss males application

Figure 1 shows the estimated parameters of the original Lee-Carter (LC)
and of the proposed Three-Component Lee-Carter (3C-LC) model on Swiss
male mortality during 1970-2014. Average shapes of each component of the
3C-LC model (left panel) distinctly decompose the mortality age-pattern.
The middle panel shows component-specific rate of mortality improvement
by age. Unlike the original LC, here we allow for different shapes of mor-
tality improvement, whose smoothness avoids jaggedness of the fitted and
forecast age profiles. The right panel presents time-trends for each of these
component age-patterns, which we forecast by standard time-series proce-
dures.
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FIGURE 1. Estimated parameters of the original Lee-Carter (LC, dashed black
lines) and of the proposed Three-Component Lee-Carter model for Swiss males
aged 0-100 during 1970-2014.

Figure 2 shows actual, estimated and forecast mortality rates. For com-
parison purposes, we include estimates from a smooth extension of the
Lee-Carter model (Delwarde et al., 2007).
To formally assess and compare the goodness-of-fit of the LC, LC smooth
and 3C-LC models, we compute and compare their Deviance, Effective
Dimension and BIC measures. Table 1 below reports the corresponding
measures.
Our proposed model outperforms the other two in observed years. In par-
ticular, neither the LC nor the LC smooth are able to capture the increase
in mortality at young adult ages during 1970-1990 due to the HIV epi-
demic (see patterns at age 25 on right panel in Figure 2). Conversely, the
increasing trend of κA in the 3C-LC model allows to capture this rele-
vant mortality development for Swiss males, which translates into a lower
Deviance measure.
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FIGURE 2. Observed, estimated and forecast mortality rates (with 80% predic-
tion intervals in the right panel) from the Three-Component Lee-Carter and the
Lee-Carter smooth models at selected years and ages for Swiss males.

TABLE 1. Poisson Deviance, Effective Dimensions (ED) and BIC measures for
the LC, LC smooth and 3C-LC models. Lower values of the Deviance, ED and
BIC (in bold) correspond to better fit, more parsimony and better model, respec-
tively.

Deviance ED BIC

Original LC 7193 247 9273
Smooth LC 7159 130 8257
Proposed 3C-LC 6627 141 7813

With respect to forecast rates, the 3C-LC provides smooth and reasonable
future age patterns, which can be clearly decomposed over age and time into
interpretable components. An additional advantage of the 3C-LC model is
that it produces wider prediction intervals than the LC model, which has
been criticized for producing too narrow intervals.
Finally, Figure 3 shows the observed and forecast life expectancy at birth
(e0) and the Keyfitz’s entropy of the life table (H) for the LC smooth and
3C-LC models. While e0 is the mean age at death of the population, H is
a relative measure of variability of the associated distribution and it cap-
tures the degree of lifespan inequality within a population. Although point
forecasts of the two models are very close, the wider prediction intervals of
the 3C-LC methodology clearly emerge from Figure 3.
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FIGURE 3. Observed and forecast with 80% prediction intervals life expectancy
at birth (e0, left panel) and Keyfitz’s entropy of the life table (H, right panel)
from the Three-Component Lee-Carter and the Lee-Carter smooth models for
Swiss males, 1970-2040.
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Abstract: Common election poll reporting is often misleading as sample un-
certainty is either not covered at all or only insufficiently. For a more compre-
hensive coverage, we propose shifting the focus towards reporting survey-based
probabilities for specific election outcomes. We present such an approach for
multi-party electoral systems, focusing on probabilities of coalition majorities. A
Monte Carlo based Bayesian Multinomial-Dirichlet model is used for estimation.
The method utilizes published opinion polls and is accompanied by a pooling
approach to summarize multiple current surveys, accounting for dependencies
between polling agencies. Sample uncertainty-based probabilities are estimated,
assuming the election was held today. An implementation in R is freely available.

Keywords: Election analysis; Opinion polls; Election reporting; Multinomial-
Dirichlet; Pooling.

1 Introduction and data

Election polls try to represent the public opinion based on a finite sample.
Current reporting on such surveys is most often limited to the observed
shares, while sample uncertainty is usually ignored. Often e.g., a coalition
– i.e. a union of multiple parties, formed to reach a governing majority – is
stated to “lose” its majority just because the joint poll share drops under
50% (cf. “Umfrage zur Bundestagswahl”, 2017). In our opinion, the focus in
survey reporting in multi-party electoral systems should be shifted towards
how probable an events is. We present our KOALA (Coalition Analysis)
approach to estimate such probabilities to bring more value to opinion
poll-based reporting. Prior to the German federal elections 2013 and 2017,

This paper was published as a part of the proceedings of the 33rd Inter-
national Workshop on Statistical Modelling (IWSM), University of Bristol, UK,
16-20 July 2018. The copyright remains with the author(s). Permission to repro-
duce or extract any parts of this abstract should be requested from the author(s).
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results based on (an earlier iteration of) our approach already entered gen-
eral media reporting (cf. “Serie: Wahlistik”, 2013, or Gelitz, 2017).
We use data from established polling agencies, quantifying the electoral
behavior if an election was held today. Our approach is to be differentiated
from prediction-aimed methods (cf. Graefe, 2017 or Norpoth & Gschwend,
2010) as potential shifts until election day are not taken into consideration.
A Bayesian Multinomial-Dirichlet model with Monte Carlo simulations is
used for estimation. Also, a pooling approach is presented to summarize
multiple current opinion polls to reduce sample uncertainty.
All methods were implemented in R and are available in the open-source
package coalitions (Bender & Bauer, 2018). An interactive shiny-based
(Chang et al., 2017) website koala.stat.uni-muenchen.de visualizes the
results and is used for communication to the general public. The process of
fetching new polls, updating the website and sending out Twitter messages
based on the newest results is automated.

2 Calculation of probabilities

In the last opinion poll conducted before the German federal election
2013 (Forsa, 2013), special interest was on whether CDU/CSU-FDP (also
“Union-FDP”) would obtain enough votes to form the governing coalition:

TABLE 1. Observed voter shares in the Forsa opinion poll published September
20th, 2013 with n = 1995 respondents

Union SPD Greens FDP The Left Pirates AfD Others

40% 26% 10% 5% 9% 2% 4% 4%

The German election system mandates a 5% votes share for parties to enter
the parliament. Votes for parties below this threshold are redistributed
(proportionally) to parties above it. Here, Union-FDP with its 45% raw
voter share would get exactly 50% of parliament seats after redistribution.
Thus, ingoring uncertainty one would conclude that a majority is slightly
missed. However, it is clear that this only holds with a certain probabilitiy
and particularly depends on whether FDP and/or AfD pass the 5% hurdle.
To estimate coalition probabilities, we choose a Multinomial-Dirichlet model
with uninformative prior for the true party shares θj (Gelman et al., 2013):

(θ1, . . . , θk)T ∼ Dirichlet(α1, . . . , αk), with α1 = . . . = αk =
1

2

Given one (pooled) survey, the posterior also is a Dirichlet distribution
with αj = xj + 1

2 for each party j and its observed vote counts xj .
Using Monte Carlo simulations of election outcomes, one can obtain specific
event probabilities by taking their relative frequency of occurence. As vote
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shares are usually rounded before publication, we adjust the available data
by adding random noise to xj before calculating the Bayesian posterior.
To visualize the development of such probabilities together with the un-
derlying uncertainty for a specific coalition we recommend using ridgeline
plots (Wilke, 2017) for the simulated seat distributions (Fig. 1). Looking
at the probabilities based on the last opinion poll before the German elec-
tion 2013, the posterior distribution is bimodal, based on the distinction
whether FDP and/or AfD pass the 5% hurdle. The resulting probability
for a Union-FDP majority is 27.2%, based on 10, 000 simulations.

Jan 2013

Apr 2013

Jul 2013

Election day

40% 45% 50% 55%

Share of parliament seats

Seat majority no yes

FIGURE 1. Development of simulated parliament seat share densities for the
coalition Union-FDP before the German federal election in September 2013 based
on Forsa opinion polls. The parts of the densities encoding for seat majorities are
colored blue.

3 Pooling approach

Pooling is used to summarize multiple polls to reduce sample uncertainty.
To reliably estimate the current public opinion, we use polls published
within the past 14 days, only using the most recent survey per polling
agency. As vote counts Xij of party j in poll i are multinomially distributed,
so are the summed number of votes

∑
iXij when pooling multiple indepen-

dent polls. Further analyses, however, show that polls from different polling
agencies are correlated. Therefore, we adjust the distribution by using an
effective sample size (Hanley et al. ,2003). Party-specific correlations were
estimated based on 20 surveys of polling agencies Emnid and Forsa, using

Cov(XAj , XBj) =
1

2
· (V ar(XAj) + V ar(XBj)− V ar(XAj −XBj)) ,

with V ar(XAj), V ar(XBj) the theoretical variances of binomial distribu-
tions and V ar(XAj −XBj) estimated from the party share differences. For
simplicity, we set the correlation to a fixed value of 0.5. The effective sam-
ple size neff is then defined as the ratio between the estimated variance for
the pooled sample and the theoretical variance for a sample of size one:

neff =
V ar(pooled)

V ar(sample of size one)
.
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For convenience, this calculation is based on the party with most votes, as
the specific party choice only marginally affects the results.

4 Conclusion

We presented an approach to estimate probabilities for specific election
outcomes based on publicly available opinion polls. Pooling allows for the
inclusion of information from multiple surveys. Visualizing the results on
a publicly available website for chosen elections, our long-term goal is to
make proper uncertainty assessment in general opinion poll-based reporting
the rule, rather than an exception.
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Abstract: Gaussian Graphical Models (GGMs) are important probabilistic graph-
ical models in Statistics. Inferring a GGM’s structure from data implies comput-
ing the inverse of the covariance matrix (i.e. the precision matrix). When the
number of variables p is larger than the sample size n, the (sample) covariance
estimator is not invertible and therefore another estimator is required. Covari-
ance estimators based on shrinkage are more stable (and invertible), however,
classical hypothesis testing for the ”shrunk” coefficients is an open challenge. In
this paper we present an exact null-density that naturally includes the shrinkage,
and allows an accurate parametric significance test that is accurate and compu-
tationally efficient.

Keywords: Gaussian Graphical Models; Shrinkage; Genetic Networks, ”small n,
large ” problem.

1 Introduction

Gaussian Graphical Models (GGMs) are important network models in
Statistics. A GGM is represented as a network where each variable is a
node, and an edge is present between a pair of nodes if their respective
partial correlation is (statistically) significant. Partial correlations measure
linear dependences between a pair of variables adjusted for all other nodes.
Inferring the matrix of pair-wise partial correlations (i.e. the GGM’s struc-
ture) demands the estimation of the covariance matrix Ĉ and its inverse,
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therefore the importance that the covariance estimator is invertible, and
well-conditioned (i.e. numerical errors are not magnified). The sample co-
variance estimator Ĉsm with p variables and n samples is not invertible
if n� p, thus another estimator must be employed. This is a common
scenario in systems biology (e.g large number of genes with few measure-
ments), and is usually refered to as the ”small n, large p” problem, sym-
bolically n� p.

Covariance estimators based on shrinkage produce a more stable estimator
by using a (convex) linear combination of Ĉsm with a target estimator T
(e.g. a diagonal matrix). The result is a well-conditioned estimator, and its
inverse can be used to compute the ”shrunk” partial correlations. A sig-
nificance test have been developed by Schäfer, J. and Strimmer, K. (2005)
but it does not take the shinkage intensity into account. This is an open
and important challenge as the reconstruction is a multiple testing prob-

lem (testing p(p−1)
2 edges), thus an slight bias would translate into an error

repeated systematically during the inference. In this work we aim to obtain
an exact density that includes the shrinkage effects. Our empirical results
in Section 3 demonstrate that this leads to a substantial improvement over
the earlier approach.

2 Shrinkage based Gaussian Graphical Models

Partial correlations are a measure of linear dependence between two vari-
ables adjusting the effects coming from all other variables. GGMs are undi-
rected graphical models represented by a matrix of partial correlations. The
matrix entry ρij in a GGM represents the partial correlation between the
variables i and j and can be computed from the inverse C−1 of the covari-
ance matrix C,

ρij = −
C−1
ij

2

√
C−1
ii

2

√
C−1
jj

(1)

where C needs to be estimated from the data. However, when n ≤ p the
sample covariance estimator Ĉsm is ill-conditioned and cannot be used.
Instead, the shrinkage based estimator Ĉ[λ] is a linear combination of
Ĉsm with a target matrix T in the form Ĉ[λ] = λT + (1 − λ)Ĉsm, where
λ ∈ [0, 1]. The resulting estimator is well-conditioned, and is implemented
in the widely used R package GeneNet (see. Schäfer, J. and Strimmer,
K. (2005)) where λ is chosen following an optimization criteria. Moreover,
significance is tested with the density of the standard partial correlation
f(ρ, k).

In the same way the correlation matrix R (i.e. the standarized Ĉsm) can
be combined with (or shrunk towards) the identity matrix I. In this case
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the diagonal elements of R (i.e. the variances) remains equal to 1, and
the off-diagonal rij (i.e. the pair-wise correlations coefficients) are scaled
by a factor of (1− λ). Therefore, the probability density function (pdf) of
the ”shrunk” correlation r[λ] can be found via the transformation r[λ] =
(1− λ)r,

f(r[λ], k) =
[(1− λ)2 − (r[λ])2]( k−3

2 )

Beta( 1
2 ,

k−1
2 )(1− λ)(1− λ)

k−3
2

(2)

where k denotes the degrees of freedom. We now use a classical result from
Fisher (1924) to obtain the probability density of the ”shrunk” partial
correlation f(r[λ], k). Here it was proved that ρ and r have the same density
differing only in the value of k. The main idea is to study the problem in
subject space where each random variable is represented with a vector, and
probabilistic relationships can be interpreted geometrically (see Wickens,
T. D. (2014)). For the purpose of illustration, lets consider three random
variables X, Y , and Z with expectation equal to zero (i.e. E[X] = E[Y ] =
E[Z] = 0). Given n data points for each variable, the corresponding random
vectors ~x, ~y, and ~z are in an space of dimension n. The correlation between
X and Y can be writen as

r =

∑n
i=1 xiyi√∑n

i=1 x
2
i

√∑n
j=1 y

2
j

= cos(∠~x, ~y) (3)

where the last equality comes from the product ~x · ~y = ||~x||||~y||cos(∠~x, ~y)
under the Euclidean norm. The rationale behind the proof is that r is re-
lated to the angle between the vectors (see Eq 3), and that this angle is
invariant under rotations of the coordinate axes. Therefore, the rotation
can be peformed in such a way that one of the axis coincides with ~z, and
conditioning on the random variable Z is equivalent to decreasing k by
one. This procedure can be continued by rotating again, and conditioning
over a new variable. The same idea can be used for r[λ] (as it is a scaled
correlation), andf(ρ[λ], k) is the probability density of ρ[λ].

To test the null hypothesis H0 : (the ”shrunk” partial correlation is zero)
with f(ρ[λ], k) we propose the following approach: Suppose the data D
consists of p variables and sample size n.

1. For D find the optimal shrinkage λopt, and estimate ρ
[λopt]
ij (Schäfer,

J. and Strimmer, K. (2005)).

2. Estimate k under H0:

(a) Simulate data of length n from H0 (i.e. the precision matrix
is the p x p identity), and using λopt (from step 1) infer the

null-hypothetic coefficients ρ
[λopt]
0ij

.

(b) Find k̂ by maximizing the likelihood of the ρ
[λopt]
0ij

with Eq 2.
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3. Test the coefficients ρ
[λopt]
ij from step 1 with f(ρ

[λopt]
ij , k̂).

We will refer to this approach as ”Shrunk MLE” in the following section.

3 Results

In this section we provide empirical evidence that the proposed ”Shrunk
MLE” approach is significantly superior to GeneNet 1.2.13. We cross-
compare the methods on synthetic, and real gene expression data by testing
the null hypothesis H0 : (the ”shrunk” partial correlation is zero). The Pos-
itive Predictive Values (PPVs) are compared on (i) syntethic data were the
true structure is known, and (ii) on real data were we use MC (a computa-
tionally expensive approach) to generate a reliable goldstandard network.
To simulate GGMs with a fixed percentage of edges δ we used GeneNet (for
the algorithm see Schäfer, J. and Strimmer, K. (2005)). Figure 1 shows the
PPV = TP

(TP+FP ) for different samples sizes n.
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FIGURE 1. Positive predictive value. On the left : GGM simulation for
p = 100, and n ranging from 10 to 200 in steps of size 10. The simulated GGM
structure has 148 correlations (i.e. δ = 0.03). The Positive predictive values
(PPV) are computed using p-values at α = 0.05. Dots (and bars) represent the
average PPV (± 2 standard errors) over 25 repeated simulations, and MC was
performed 15 times. Three methods are displayed:GeneNet (in dashed red), MC
(green), and Shrunk MLE (thick blue). Note that the green and blue curves
are superposed.On the left : The PPV are computed using Benjamini Hochberg
adjusted p-values at α = 0.05.

The results show a close agreement between the PPV obtained by MC,
and with ”Shrunk MLE”. On the other hand, GeneNet has a lower PPV
suggesting that it learns too many False Positives (FPs) Figure 2. We also
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analyzed Escherichia Coli microarray data from Schmidt-Heck, W. et al.
(2004), consisting of stress temporal response of 102 genes in 9 time points
after IPTG (induction of the recombinant protein SOD). Figure 2 shows
a Venn diagram for the edges found by each method, here we can observe
that ”Shrunk MLE” learns nearly the same edges as MC.
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n

GeneNet

Method

F
P

GeneNet Shrunk MLE

MC 4673

0

0

0

220

20

0

238
MC

Shrunk

𝛼 = 0.05

FIGURE 2. False positives and Empirical results. On the left : GGM simu-
lation for p = 100, and n ranging from 10 to 200 in steps of size 10. The simulated
GGM structure has 148 correlations (i.e. δ = 0.03). The False Positives (FPs) are
computed using p-values at α = 0.05. Dots (and bars) represent the average FPs
(± 2 standard errors) over 25 repeated simulations, and MC was performed 15
times. Three methods are displayed: GeneNet (in dashed red), MC (green), and
Shrunk MLE (thick blue). Note that the green and blue curves are superposed.
On the right : Venn diagram for the inferred edges in E. coli. Taking MC as a
gold standard GeneNet ’s sensitivity is 258/258=1, with a low PPV of 258/478
≈ 0.54. Shrunk MLE has a slightly decreased sensitivity of 238/258 ≈ 0.92, but
yields a perfect PPV of 1.

A GO enrichment analysis (http://geneontology.org/) with False Discov-
ery Rate (FDR< 0.05) shows that the connected genes belong signifi-
cantly to stress response (FDR= 2.02E−02), in contrast with GeneNet
(FDR=7.73E−02). This suggests a dillution of the GO’s significance due
higher rate of FPs. The strongest connections were lacA–lacZ, lacY– lacZ,
and lacA–lacY related to the lac operon (known to be triggered by IPTG).

4 Conclusions

Gaussian Graphical Models (GGMs) are an important tool for network
learning. Reconstructing the network demands the estimation of the co-
variance matrix, which is ill-conditioned if the sample size is smaller than
the number of variables. Covariance estimators based in shrinkage make the
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covariance matrix invertible, however, for an accurate (parametric) signifi-
canc tests the shrinkage value needs to be included, otherwise the inference
will have a systematic error (e.g. biased p-values). In this paper a new
shrunk density was introduced, and to our knowledge is the only test that
includes the regularization effects. In the ”small n, large p” scenario the
new density allows an accurate inference for any shrinkage value.
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Abstract: Decision trees and their population counterparts are becoming promis-
ing alternatives to classical linear regression techniques because of their superior
ability to adapt to situations where the dependence structure between the re-
sponse and the covariates is highly nonlinear. Despite their popularity, those
methods have been developed for classification and mean regression, while often
the conditional mean would not be enough to provide a complete picture of data
that strongly deviate from the Gaussian assumption. The approach proposed in
this paper instead considers the conditional quantile at level τ ∈ (0, 1) of the
response variable as a sum of regression trees and is particularly valuable when
skewness, fat–tails, outliers, truncated and censored data, and heteroskedasticity,
can shadow the nature of the dependence between the variable of interest and
the covariates.

Keywords: Regression trees, Bayesian methods, quantile regression.

1 Introduction

In empirical studies, researchers are often interested in analysing the be-
haviour of a response variable given the information on a set of covariates.
The typical answer is to specify a linear regression model where unknown
parameters are estimated by OLS, thereby leading to the approximation of
the mean function. Although the mean describes the average response path
as a function of the covariates, it provides little o no information about the
behaviour of the conditional distribution on the tails. As far as the entire
distribution is concerned, quantile regression methods adequately charac-
terise the behaviour of the response variable at different confidence levels
providing a complete picture of the relationship with the covariates. More-
over, the quantile analysis is particularly suitable when the conditional
distribution strongly deviates from the Gaussian assumption because it

This paper was published as a part of the proceedings of the 33rd Inter-
national Workshop on Statistical Modelling (IWSM), University of Bristol, UK,
16-20 July 2018. The copyright remains with the author(s). Permission to repro-
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displays heterogeneity, asymmetry or fat–tails, see, e.g., Koenker (2005).
Linear quantile regression models have been extensively applied in different
areas, such as, finance, engineering, econometrics and environmetrics, as a
direct approach to quantify the level of risk of a given event, social sciences
and quantitative marketing to find appropriate and effective solutions to
specific segments of customers, and many other related fields see, Koenker
et al (2017). However, despite their relevance and widespread application
in empirical studies, linear quantile regression models provide only a rough
“first order” approximation of the relationship between the τ–level quan-
tile of the response variable and the covariates. Indeed, as first recognised
by Koenker (2005), quantiles are linear functions only within a Gaussian
world, thereby stimulating many recent attempts to overcome this limita-
tion. Chen et al (2009), for example, consider the copula–based approach to
formalise nonlinear and parametric conditional quantile relationships. Al-
though quite flexible in fitting marginal data, the copula approach forgets
to consider nonlinear interactions among the covariates. Classification and
regression trees (CART, Breiman et al (1984)) and their population coun-
terparts (Breiman (2001)) extensively use recursive partitioning algorithms
to perform nonparametric regression and variable selection. The attractive
feature of decision trees methods rely in their ability to partition the co-
variates space into disjoint hyperrectangles, thereby improving the local
fit. Therefore, CART adapt to situations where the dependence structure
between the response and the covariates is highly nonlinear. Despite their
extensive use in a wide variety of fields, those methods have been mainly
developed for classification and mean regression. In this paper, we adopt
the Bayesian point of view and we extend the additive regression trees
(BART) approach of Chipman et al (2010) to deal with conditional quan-
tiles estimation. Quantile estimation have been previously extended within
the related context of random forest by Meinshausen (2006). However, un-
like random forests, the Bayesian approach to decision trees learning, being
likelihood–based, provides a complete inferential tool for model assessment
and selection.

2 Quantile regression tree

The linear quantile regression framework for i.i.d. data models the condi-
tional τ–level quantile of the response variable Y , with τ ∈ (0, 1), as a linear
function of the vector of dimension (q × 1) of exogenous covariates X, i.e.,
Qτ (Y | X = x) = x′β, thereby avoiding any explicit assumptions about
the conditional distribution of Y | X = x. This is equivalent to assume
an additive stochastic error term ε for the conditional regression function
µ (x) = x′β to be i.i.d. with zero τ–th quantile, i.e, Qτ (ε | x) = 0, and
constant variance. Following Yu and Moyeed (2001), the previous condi-
tion is implicitly satisfied by assuming that the conditional distribution of



Bernardi and Stolfi 35

the response variable Y follows an Asymmetric Laplace (AL) distribution
located at the true regression function µ (x), with constant scale σ > 0
and shape parameter τ , i.e., ε ∼ AL (τ, µ (x) , σ). The resulting quantile
regression model assumes the AL distribution as a misspecified working
likelihood that correctly identify the conditional quantile function. Simi-
larly to the Bayesian Additive Regression Tree approach of Chipman et al
(2010) for the conditional mean, the quantile regression tree extends the
linear quantile model by assuming a sum–of–trees ensemble for the regres-
sion function µ (x). Specifically, the Bayesian Additive Quantile Regression
Tree (BAQRT) model can be expressed as

Y = µ (x) + ε (1)

≈ TM1 (x) + TM2 (x) + · · ·+ TMm (x) + ε, (2)

where ε ∼ AL (τ, 0, σ). The assumption about the error term in equation
(2) implies that µ (x) = Qτ (Y | X = x). Furthermore, in equation (2) we
assume that the quantile of the response variable is an additive function
of m ≥ q regression trees, each composed by a tree structure, denoted by
T , and the parameters of the terminal nodes (also called leaves), denoted
by M. Therefore, the j–th tree for j = 1, 2, . . . ,m, denoted by TMj , rep-
resents a specific combination of tree structure Tj and tree parametersM,
i.e., the regression parameters associated to its terminal nodes. The tree
structure Tj contains information on how any observation yi, in a set of n
i.i.d. observations y = (y1, y2, . . . , yn), recurses down the tree specifying a
splitting rule for each non–terminal (internal) node. The splitting rule has
the form xk ≤ c and consists of the splitting variable xk and the splitting
value c ∈ R. The observation yi is assigned to the left child if the splitting
rule is satisfied and to the right child, otherwise, until a terminal node is
reached and the value of the leaf of that terminal node is assigned as its
predicted value. Therefore, the quantile prediction corresponding to yi as-
signed by the sum of regression tree specified in equation (2) is the sum
of the m leaf values. Hereafter, we denote by Mj = {µj,1, µj,2, . . . , µj,bl}
the set of parameters associated to the bj terminal nodes of the j–th tree,
where µj,l, for l = 1, 2, . . . , bl denotes the conditional quantile predicted by
the model. The additive quantile regression tree specified in equation (2)
provides a natural framework for likelihood–based inference on the set of
quantile regression parameters, i.e., the location parameters associated to
the terminal nodes of each tree belonging to the ensemble. However, addi-
tional prior information should be imposed in order to infer the structure
of the each tree.

3 Application to Boston housing data

We analyse the Boston Housing data first considered by Harrison and Ru-
binfeld (1978) to study the influence of pollution on house prices. In par-
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FIGURE 1. First panel: estimated quantile regression for τ = 0.25; second panel:
estimated quantile regression for τ = 0.5; third panel: estimated quantile regres-
sion for τ = 0.75.

ticular, we consider the dataset corrected by Li et al (2010). A complete
description of the data and the covariates can be found in Li et al (2010).
Figure 1 plots the conditional quantiles for tree different quantile levels.
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Abstract: For nonlinear time series, we study a kind of functional-coefficient au-
toregressive and linear regression mixed model. This model can handle autocorre-
lation and heteroscedasticity of a time series and we use the B-spline approach to
estimate parameters in the model. A real data about Lake Shasta inflow is used
for illustration of the model. From the performance of 6-step forward predic-
tions, our study model performs better than functional-coefficient autoregressive
regression model as well as regression and autoregressive mixed model.
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B-spline; Nonlinear time series.

1 The Proposed Model and Estimated Approach

1.1 The Proposed Model

The regression and autoregressive mixed (RAM) model (Box et al., 2008)
is one of widely used models to study the relationship between a time series
sample and some explanatory covariates, which has the following form,

Yt = α1Yt−1 + · · ·+ αpYt−p + β0 + β1X1t + · · ·+ βqXqt + εt, (1)

where Yt is a time series, p is the order of autoregressive part, Xjt are
observed covariates for j = 1, · · · , q and q is the number of interested
covariates. It is often assumed that the error item εt is white noise, i.e.,
εt ∼WN(0, σ2), and εt is independent with Ys when s < t.

This paper was published as a part of the proceedings of the 33rd Inter-
national Workshop on Statistical Modelling (IWSM), University of Bristol, UK,
16-20 July 2018. The copyright remains with the author(s). Permission to repro-
duce or extract any parts of this abstract should be requested from the author(s).
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However, the coefficients of model (1) are assumed constant. And this as-
sumption limits its application among complicated time series data, espe-
cially when data have heteroscedasticity, breaking point, trend and so on.
Broaden the limitation of constant autoregressive coefficients, we study the
following functional-coefficient autoregressive and linear regression mixed
(FALRM) model.
For a time series Yt and covariates, X1t, · · · , Xqt, our study mixed model
has the following form,

Yt = α1(Zt)Yt−1 + · · ·+ αp(Zt)Yt−p + β0 + β1X1t + · · ·+ βqXqt + εt, (2)

where Zt is a variable depending on time t and εt ∼ WN(0, σ2). The
forms of autoregressive coefficient, αj(Zt) for j = 1, 2, · · · , p are unknown
but their functions are smoothing enough. βj , j = 0, · · · , q, are constant
unknown parameters.
Because the autoregressive coefficients in model (2) are functions of variable
Zt, OLS method can not be applied for obtaining their estimators. There-
fore, some nonparametric estimation methods should be used instead. In
this paper, we use the B-spline approach (De Boor, 2001) .

1.2 The B-spline Approach

Suppose the degree of the B-spline is k and number of knots is ν. Based
on the ν + k + 1 basis functions B1(Zt), . . . , Bν+k+1(Zt), α(Zt) can be
approximated by a linear combination of the basis functions,

α(Zt) ≈ γ1B1(Zt) + · · ·+ γν+k+1Bν+k+1(Zt) = BT(Zt)Γ,

where Γ = (γ1, . . . , γν+k+1)T and B(Zt) = {B1(Zt), . . . , Bν+k+1(Zt)}T.
Note that all α1(Zt), · · · , αp(Zt) can be decomposed similarly, that is,
α1(Zt) ≈ BT(Zt)Γ1, · · · , αp(Zt) ≈ BT(Zt)Γp with Γ1 = (γ1,1, . . . , γ1,ν+k+1)T

and Γp = (γp,1, . . . , γp,ν+k+1)T. After substituting them into model (2),
then model (2) can be approximated by a linear regression model, that is,

Yt ≈ [BT(Zt)Yt−1]Γ1 + · · ·+ [BT(Zt)Yt−p]Γp
+β0 +X1tβ1 + · · ·+Xqtβq + εt. (3)

Once constant parameter vectors Γ1, · · · ,Γp are estimated, estimations of
corresponding functional-coefficients, i.e., α̂1(Zt), · · · , α̂p(Zt) can be ob-
tained easily.
We know that the performance of B-spline depends on the degree, number
and locations of knots, as discussions in Kim (2007). In the estimation
procedure, we can use the B-spline with equally spaced knots, and select
the degree k and the number of knots ν based on average mean squared
error. This criterion called AMS was studied in Cai et al. (2000), which is
essentailly a modified multifold cross-validation method.
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2 A Real Study
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FIGURE 1. Varying coefficient estimations.

As an illustration, we apply the model (2) to Lake Shasta inflow data, which
has been studied in Shumway and Stoffer (2017). The data are 454 months
of measured values for the climatic variables: air temperature (Temp), dew
point (DewPt), cloud cover (CldCvr)), wind speed (WndSpd), precipita-
tion (Precip), and inflow (Inflow) at Lake Shasta, California. Our interested
problem is to predict the inflow to Lake Shasta based on the climatic fac-
tors.
When using model (2) to analyze data, we put log(Inflowt) as Yt, and
denote Zt as Yt−d, where d can be any integer value between 1 and p. Let
Tempt, DewPtt, CldCvrt, WndSpdt and Precipt be Xqt, q = 1, 2, 3, 4, 5,
respectively. Inspired by the idea of AMS, we can modify this criterion to
not only select k and ν of B-spline, but also determine p, d and covariates
in model (2). According to the modified AMS criterion, k = 3, ν = 2,
p = 4, d = 4 and selected covariates are CldCvrt, WndSpdt and Precipt.
Thus, denote X1t = CldCvrt, X2t = WndSpdt and X3t = Precipt, note
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that Yt = log(Inflowt), the final target model is

Yt = α1(Yt−4)Yt−1 + α2(Yt−4)Yt−2 + α3(Yt−4)Yt−3

+α4(Yt−4)Yt−4 + β0 + β1X1t + β2X2t + β3X3t + εt. (4)

To evaluate the performance of the model (4), we use the first 448 data
points to estimate paramters, leaving out last 6 points for prediction. The
estimated functions αj(.)(1 ≤ j ≤ 4) are plotted in Figure 1, estimates
of βj(j = 0, 1, 2, 3) are summarized in Table 1 and ε̂t ∼ WN(0, 0.045).

Table 2 reports the absolute relative errors (| ̂log(Inflowt)−log(Inflowt)
log(Inflowt)

|) of 6-

step forward predictions from model (4) (FALRM).
For comparison, the function-coefficient autoregressive regression (FAR(p))
model (Cai et al., 2000) is used to fit log(Inflowt) (the optimal model is
achieved with h = 0.17, p = 3 and d = 1 based on AMS criterion), Table
2 also reports the corresponding predictions of the FAR(p) model. Be-
sides, we use the regression and autoregressive mixed (RAM) model to
study log(Inflowt), and apply AR(p) model to handle the autocorrelation
of residuals, its relative errors of 6-step forward predictions are reported
in Table 2. It can be seen that model (4) performs better than other two
models.

3 Conclusion

In this paper, we studied the functional-coefficient autoregressive and lin-
ear regression mixed model, which can be regarded as the extension of
functional-coefficient autoregressive regression model. Our study model can
handle autocorrelation and heteroscedasticity of time series. Based on the
B-spline appraoch, the varying-coefficient and constant parameters can be
estimated easily and fast. Through analyzing Lake Shasta inflow data, our
study model performs better than functional-coefficient autoregressive re-
gression model as well as regression and autoregressive mixed model.

TABLE 1. Estimation results of constant coefficients in model (4).

Coefficient Estimate Std. Error T value P value

β0 4.262 0.132 32.375 < 0.001
β1 0.491 0.094 5.223 <0.001
β2 0.203 0.073 2.788 0.006
β3 2.023 ×10−3 9.069×10−5 22.301 <0.001
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TABLE 2. The relative predictive error of log(Inflowt).

Forward step True value FALRM FAR RAM

1 4.849 0.065 0.064 0.057
2 4.575 0.038 0.116 0.162
3 4.495 0.052 0.143 0.085
4 4.301 0.026 0.224 0.100
5 4.436 0.055 0.212 0.029
6 4.535 0.090 0.198 0.109
average 0.054 0.159 0.090
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Abstract: Many people like eating chocolate, but may have some concerns on
health risk, especially to people with Cardiovascular or Neurovascular diseases.
Chocolate, made from cocoa beans, contains flavonoids which contain antioxi-
dants. Flavonoids are the most abundant polyphenols in human diet. Polyphenols
have antioxidant properties which can prevent aging and is also beneficial to heart
disease and diabetes patients. People with heart diseases should eat less of satu-
rated fat, trans fat, sodium, and cholesterol. They should eat more dietary fiber.
Cocoa flavanols promote healthy blood flow circulation from head to toe. The
heart, brain, and muscle depend on a healthy circulatory system. Multivariate
correlation study has found that (1) strong negative correlation between Cocoa
and Sugar, and (2) strong positive correlation between Diet Fiber and Iron. Most
dark chocolate contains more cocoa, and less sugar. Dietary fiber and iron are
high in correlation because of the high cocoa percent. The above two correlations
can be further explained by conducting the Hierarchical Clustering Analysis on
separating the Dark Chocolate, Milk Chocolate and White Chocolate. The Cocoa
and Calcium are the deciding factors to separate these three Chocolates.

Keywords: STEM, Flavonoids, Chocolate, Statistics, Antioxidant

1 Introduction and Literature Research

The objective of this paper are to find out if eating chocolate is unhealthy,
especially what diseases can be prevented by eating chocolate? Will the
nutrition composition patterns indicate which chocolate type is healthier?
Chocolate is a powerful source of antioxidant. Chocolate, made from cocoa
beans, contains flavonoids which contain rich antioxidants. Antioxidants
prevent human aging and is also beneficial to heart disease and diabetes
patients particularly. Flavonoids are the most abundant polyphenols in
human diet, representing 2/3 of those digested. Polyphenols are compounds
found abundantly in natural food sources that have antioxidant properties.

This paper was published as a part of the proceedings of the 33rd Inter-
national Workshop on Statistical Modelling (IWSM), University of Bristol, UK,
16-20 July 2018. The copyright remains with the author(s). Permission to repro-
duce or extract any parts of this abstract should be requested from the author(s).
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FIGURE 1. Dark Chocolate Distribution

Flavonoids have the general structure of a 15- carbon skeleton: (1) consists
of two phenyl rings (A and B) and heterocyclic ring (C), and (2) this carbon
structure is abbreviated C6-C3-C6. Chocolate flavonoids are flavanols.

2 Experimental Setup and Graphical Analytical
Analysis

Target was chosen as the main chocolate retailer since it had plenty choco-
late products. 60+ different types of chocolates were collected, and each
had 20 variables. In order to eliminate the bias of the central tendency and
spread, the raw data was transformed to become Z- Standardized Data. Af-
ter Z-transformation, all variables have new sampled distributions of mean
at 0 and standard deviation of 1. The objective of this transformation is
to eliminate any larger variation bias in building the statistical modeling
of deriving the chocolate health index. JMP interactive graphical analysis
(Figure 1) was conducted to uncover the comprehensive chocolate nutrition
distributions.
After looking at the interactive graphical mode of nutrition distribution
(only Dark Chocolate was selected), some interesting correlations were
found. Dark chocolates mostly in common have low cholesterol, low sodium,
and high dietary fiber. This helps prove that the hypothesis (dark choco-
late is healthier than milk chocolate) may be correct. Milk chocolate, on the
other hand, does not show any significant correlation patterns among the
variables analyzed. Most sampled distributions are near random (white
noise). This observation may indicate there is no health requirement on
formulating the chocolate nutrition ingredients for the milk chocolate. The
distribution contrast between Dark Chocolate and Milk Chocolate has pro-
vided the first-hand information on how to derive the Chocolate Health
Index.

3 Multivariate Statistical Analysis

The objective of this paper is to study how the Chocolate manufacturers
chose healthier nutrition facts for particular healthier chocolate types. A
JMP multivariate correlation study shown in Figure 2 was further done to
see if any chocolate type has strong correlation(s) between healthier nutri-
tion and/or negative correlations between unhealthy nutrition. Correlations
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FIGURE 2. Multivariate Correlations Table

between <-0.75 and >0.75 threshold were set to identify any nutrition cor-
relation pattern.
Sugar and cocoa pair has a strong negative correlation of -0.9162. This
shows that the higher the chocolate percent is, the lower the sugar percent.
Since dark chocolate has a high chocolate percent, it also has low sugar.
This indirectly indicates that dark chocolate is healthier with higher cocoa
percent and lower sugar percent. The other identified strong positive cor-
relation is between dietary fiber and iron. One science research has shown
that most dark chocolate products with 70%-85% are rich in Fiber and Iron
Recommended Daily Allowance (RDA). Dietary fiber and iron are high in
positive correlation because of the dark chocolates high cocoa percent. Both
graphical analyses have further provided why dark chocolate is healthier
due to certain skewed nutrition preference.
Hierarchical Clustering Analysis was used to analyze and uncover evidence
of correlation patterns. In data mining and statistics, hierarchical cluster-
ing analysis (HCA) is a cluster analysis which seeks to build a hierarchy of
clusters. Strategies for hierarchical clustering generally fall into two types.
Agglomerative: this is a ”bottom up” approach: each observation starts
in its own cluster, and pairs of clusters are merged as one moves up the
hierarchy. Divisive: this is a ”top down” approach: all observations start
in one cluster, and splits are performed recursively as one moves down the
hierarchy. Generally, the computing time of the Agglomerative approach is
faster than the Divisive approach. Optimal efficient agglomerative meth-
ods have been developed to significantly improve the computing algorithm
for large data sets. The main objective of this analysis was to search for
the degree of similarity among nutrition variables, and to search for pat-
terns (and trends) of similarity. The Agglomerative approach can identify
a clustering pattern faster and more accurately from bottom-up approach
by progressively merging clusters based on a defined distance metric. The
linkage criterion determines the distance between sets of observations as
a function of the pairwise distances between observations. After grouping
the first pair, JMP software calculated the center of the new formed group
and found the next strongest affinity pair until the pairs were broken down
as shown in the Dendrogram. Dendrogram has identified three clusters as
color-coded shown in Figure 3. Number of clusters are chosen optimally
by JMP algorithm based on the curve of the scree plot. In Figure 4, the
three clusters identified: from, both 1st and 2nd clusters are from dark
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FIGURE 3. Hierarchical Dendrogram Analysis

FIGURE 4. Cluster Analysis and Chocolate Type

chocolate products, and the 3rd cluster is from white chocolate and milk
chocolate. The HCA is un-supervised bottom-up grouping algorithm. There
is no preliminary condition/assumption to group both white chocolate and
milk chocolate in the third cluster. The other interesting point is why dark
chocolate products are split into two distinguished clusters.

4 Conclusions and Further Research

JMP software tools such as cluster analysis, correlation analysis, and dis-
tribution analysis were conducted to analyze Chocolate nutrition. Cocoa
science, such as cocoa production, flavonoids, antioxidants, flavanol bene-
fits, and the different types of chocolate, was learned throughout this pa-
per. Commercial chocolate products can be categorized into three clusters
based on Chocolate Nutrition amount. Dark chocolate with higher Cocoa
nutrition is healthier than other chocolate products. Healthier chocolate
products can prevent heart disease due to rich anti-oxidant flavonoids. This
multivariate statistical analysis may provide Chocolate Producers more in-
sight information on how to make better Chocolate Products which may
help patient with Heart Disease. The same multivariate statistical approach
can be further applied to the other Cardiovascular or Neurovascular dis-
eases to extend the scope of this paper.
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Abstract: Zero-inflated regression models for count data are often used in health
economics to analyse the demand for medical care. Much of the recent literature
on the topic has focused on univariate health-care utilization measures, such
as the number of doctor visits. However, health service utilization is usually
measured by a number of different counts (e.g., numbers of visits to different
health-care providers). In this case, zero-inflation may jointly affect several of the
utilization measures. We propose a zero-inflated regression model for multinomial
counts with joint zero-inflation and apply it to a set of health-care utilization data.

Keywords: Excess zeros; Health-care utilization; Multinomial logit.

1 Motivation and data description

A sample of count data is zero-inflated when the proportion of observed
zeros is much larger than expected under standard count models. This issue
arises, in particular, in the analysis of health-care utilization, as measured
by the number of doctor visits.
For example, Deb and Trivedi (1997) investigate the demand for medical
care by elderlies in the USA. Their analysis is based on data from the
National Medical Expenditure Survey (NMES, 1987-1988). Several mea-
sures of health-care utilization are reported, such as the numbers of visits
to a doctor in an office setting, visits to a non-doctor health professional
(such as a nurse, optician. . . ) in an office setting, visits to a doctor in an
outpatient setting, visits to an emergency service. . .
A feature of these data is the high proportion of zero counts observed for
some of the health-care utilization measures, i.e., there is a high proportion

This paper was published as a part of the proceedings of the 33rd Inter-
national Workshop on Statistical Modelling (IWSM), University of Bristol, UK,
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of non-users of the corresponding health-care service over the study period.
Deb and Trivedi (1997) analyse separately each measure of health-care
utilization. However, several studies suggest that these measures are not
independent. Therefore, we suggest to analyse them jointly, by fitting a
multinomial logistic regression model adapted to zero-inflation.
We illustrate the proposed model by considering three measures of health-
care utilization, namely the numbers: i) Z1 of consultations with a non-
doctor in an office setting (denoted by ofnd), ii) Z2 of consultations with
a non-doctor in an outpatient setting (opnd) and iii) Z3 of consultations
with a doctor in an office setting (ofd).
If mi denotes the total number of consultations for the i-th individual and
Xi is a vector of covariates, we let Zi = (Z1i, Z2i, Z3i) and assume that Zi
has a multinomial distribution mult(mi,pi), where pi = (p1i, p2i, p3i) and
p1i = P(Z1i = 1|Xi) is the probability that a consultation is of type ofnd
(similar interpretations hold for p2i = P(Z2i = 1|Xi) and p3i = P(Z3i =
1|Xi)).
Frequencies of zero in ofnd, opnd and ofd are 62.7%, 81.3% and 1.5%
respectively (calculated over the 3224 surveyed individuals). Frequencies
of zeros occuring simultaneously in the pairs (ofnd and opnd), (ofnd and
ofd) and (opnd and ofd) are 51.7%, 0.24% and 1%. That is, 51.7% of the
subjects did not use any services associated with counts Z1 and Z2. This
high frequency and the very low frequency of zero counts for ofd suggest
that there exist some permanent non-users of ofnd and opnd. In other
words, there is an excess of observations (0, 0,mi) in the data set.

2 Zero-inflated multinomial regression model

To accommodate these observations, we propose the zero-inflated multino-
mial (ZIM) regression model, defined as:

∀i = 1, . . . , n, Zi ∼
{

(0, 0,mi) with probability πi,
mult(mi,pi) with probability 1− πi, (1)

where πi represents the probability that the i-th individual is a permanent
non-user of health-care services of the type ofnd and opnd. We model the
probabilities p1i, p2i and p3i via multinomial logistic regression:

p1i =
eβ
>
1 Xi

1 + eβ
>
1 Xi + eβ

>
2 Xi

, p2i =
eβ
>
2 Xi

1 + eβ
>
1 Xi + eβ

>
2 Xi

, p3i = 1− p1i − p2i.

The probability πi of (0, 0,mi)-inflation may depend on covariates Wi (Wi

may overlap with Xi or be distinct) and can be modeled through a logistic
regression, i.e. logit(πi) = γ>Wi.
Based on a set of independent observations (Zi,Xi,Wi), i = 1, . . . , n, the
parameter (γ, β1, β2) can be estimated by maximum likelihood (ML). The
MLE is consistent and asymptotically normal, see Diallo et al. (2018), who
also report results of a comprehensive simulation study.
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3 An application to NMES data

Several covariates are available in the NMES data set, including: gender (1
for female, 0 for male), age (in years/10), marital status (1 if married, 0 if
not), number of years of education, income (in ten-thousands of dollars),
number of chronic diseases, self-perceived health level (poor, average, ex-
cellent) and an indicator of coverage by the health insurance ”medicaid”
(1 if covered, 0 otherwise). Self-perceived health is re-coded as ”health1”
(1 if health is perceived as poor, 0 otherwise) and ”health2” (1 if excellent,
0 otherwise).
All parameters in model (1) are estimated by ML and a backward elimi-
nation procedure based on AIC is carried out to select relevant covariates.
Results are reported in Table 1. Some interpretations are as follows (see
Diallo et al. (2018) for a detailed analysis).
Age, gender, educational level and medicaid status are identified as the
most influencing factors for being a permanent non-user of ofnd and opnd,
with medicaid recipients being more likely to be permanent non-users.
Moreover, medicaid status does not affect ofnd utilization, which may be
explained by the fact that part of the decision of (not) using ofnd by med-
icaid recipients was captured in the model for πi. The probability of using
opnd is lower for medicaid recipients than for non-recipients. All this con-
firms previous findings in the literature that medicaid recipients tend to
favor doctor visits in an office setting over non-doctor visits.
Educational level is an important determinant of the decision of being a
permanent non-user of ofnd and opnd. But once an individual has chosen to
use eventually these health-care services (with a probability that increases
with level of education), our results suggest that schooling does not tend
to favor a specific kind of health-care service.
Income does not affect utilization of medical care. This is consistent with
previous findings and is explained in the literature by the fact that income
may affect quality of care rather than visits number.
All these results confirm previous findings in the literature and additionally,
unable us to rank the various forms of medical care by order of utilization.
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TABLE 1. ZIM regression model fitted to NMES data.

covariate estimate s.e. Wald test Pr(>t)

β1,1 intercept -1.248440 0.327153 -3.816 0.000136 ***
β1,2 health1 -0.396752 0.071734 -5.531 3.19e-08 ***
β1,3 health2 0.307117 0.078294 3.923 8.76e-05 ***
β1,4 numchron -0.128615 0.016425 -7.830 4.87e-15 ***
β1,5 age 0.021925 0.039900 0.550 0.582655
β1,6 gender 0.184974 0.046684 3.962 7.43e-05 ***
β1,7 fstatus 0.204095 0.046834 4.358 1.31e-05 ***
β1,8 school 0.007483 0.006577 1.138 0.255254
β1,9 income -0.009338 0.006506 -1.435 0.151202
β1,10 med -0.034313 0.090432 -0.379 0.704366

β2,1 intercept 2.164690 0.465538 4.650 3.32e-06 ***
β2,2 health1 0.130806 0.097185 1.346 0.178319
β2,3 health2 -0.405494 0.166065 -2.442 0.014615 *
β2,4 numchron -0.037862 0.024914 -1.520 0.128586
β2,5 age -0.553335 0.058814 -9.408 < 2e-16 ***
β2,6 gender -0.028528 0.073176 -0.390 0.696649
β2,7 fstatus -0.239131 0.072781 -3.286 0.001018 **
β2,8 school -0.017676 0.010526 -1.679 0.093101 .
β2,9 income 0.011618 0.009440 1.231 0.218424
β2,10 med -0.397013 0.148050 -2.682 0.007327 **

γ1 intercept -0.605712 0.548682 -1.104 0.269619
γ2 health1 0.249759 0.137186 1.821 0.068670 .
γ3 numchron -0.053888 0.035305 -1.526 0.126922
γ4 age 0.165217 0.069555 2.375 0.017532 *
γ5 gender -0.269703 0.091465 -2.949 0.003191 **
γ6 school -0.073233 0.012854 -5.697 1.22e-08 ***
γ7 med 0.543147 0.160838 3.377 0.000733 ***
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1 Introduction

Diffusion of innovations has a long tradition within the literature (Peres et
al., 2010), but the largest number of the contributions still approach the
problem with separate analyses for specific products or for a global cat-
egory. Only in the last years (Guseo and Mortarino, 2014 and references
therein cited), some applicable models were made available to jointly de-
scribe the diffusion of two competitors simultaneously spreading into the
same category niche. The relevance of building a joint model is due to the
need for simultaneously estimating the peculiarities of each product and
their mutual interaction that may generate competition or cooperation.
For more than two competitors, however, there aren’t published models to
be feasible for applications. In other words, the extension from two to more
than two actors is only theoretically included into the current literature,
but high parameter dimension and complexity structure of the interactions
among competitors prevent this extension to be a real tool. For this reason,
in applications, practitioners, to obtain a bivariate structure, are forced to
aggregate data pertaining to the more similar products or to describe the
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market only through the two leading actors. This, of course, leads to hiding
the specific peculiarities of some of the actors thus wasting rich information.
The aim of this paper is to give a contribution to the topic of modelling
diffusion of innovations to describe a market where three actors compete
for the same customers, illustrating how rich the description of their mutual
interactions could be to accurately represent the market’s features. Ana-
lyzing real data in the energy context, we will show how a three-competitor
model (3CM) can be fitted. To the same dataset we will also fit a reduced
model for two competitors (2CM), where, as it is often done in practice,
the data for two competitors are aggregated. The aim of the comparison
is to show that using the reacher dataset through the 3CM allows us ob-
taining better results in terms of forecasting accuracy and of reduction of
prediction confidence band width.

2 Model

Diffusion models are usually defined through a differential representation,
which may admit or not a closed-form solution. The main advantage relies
on parsimonious descriptions of real adoption processes based on inter-
pretable parameters. Let zi(t) be the cumulative sales of the i-th competi-
tor, i = 1, 2, 3, and z(t) =

∑
i zi(t) be the category cumulative sales of all

the competitors in the market. Let z′i(t) = dzi(t)/dt be the instantaneous
sales of the i-th product. Since the products represent a homogeneous cat-
egory competing for the same customers, we assume a common market
potential, m and correspondingly, a common residual market, m−z(t). We
focus here on situations where two products exist in the market from the
beginning, while the third product enters the market at time t= c2, with
c2 > 0 (t=0 represents the time origin for the first two competitors). The
3CM here proposed, as an extension of the 2CM by Guseo and Mortarino
(2014), can be expressed with the following system of differential equations,
where R(t) = 1− z(t)/m represents the relative category residual market:

z′1(t)=m

{[
p1α + (q1α + δα)

z1(t)

m
+ q1α

z2(t)

m

]
(1− It>c2) +

+

[
p1β + (q1β + δβ)

z1(t)

m
+ q1β

z2(t)

m
+ q1β

z3(t)

m

]
It>c2

}
R(t)x1(t)

z′2(t)=m

{[
p2α + (q2α − δα)

z1(t)

m
+ q2α

z2(t)

m

]
(1− It>c2) +

+

[
p2β + q2β

z1(t)

m
+ (q2β + δβ)

z2(t)

m
+ q2β

z3(t)

m

]
It>c2

}
R(t)x2(t)

z′3(t)=m

{[
p3 + (q3 − δβ)

z1(t)

m
+ (q3 − δβ)

z2(t)

m
+ q3

z3(t)

m

]
It>c2

}
R(t)x3(t)

m=mα(1− It>c2) +mβIt>c2

z(t)= z1(t) + z2(t) + z3(t)It>c2 . (1)
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System (1) describes a competition among three products in two phases.
During the first phase, until t ≤ c2, it is assumed that the first two prod-
ucts are characterized separately by three parameters each (denoted with
subscript α). The parameters of the first product are (p1α, q1α + δα, q1α),
and the parameters of the second product are (p2α, q2α, q2α − δα). At time
t= c2, when the competition extends from two to three products, we al-
low the first two products to be characterized by new parameters (de-
noted with subscript β): (p1β , q1β + δβ , q1β) for the first competitor, and
(p2β , q2β , q2β − δβ) for the second. This is an important feature, since it is
very common that a new competitor’s launch affects the diffusion dynam-
ics of previously existing products. The third competitor is characterized
by parameters (p3, q3 − δβ , q3). Parameters δj , j ∈ {α, β}, serve the pur-
pose to differentiate between within–brand word-of-mouth (the effect on
the future adopters of a product due to its own past adoptions) and cross–
brand word-of-mouth (the effect on the future adopters of a product due to
the past adoptions of its competitors). The relevant issue in this research
topic is to build a large set of models to describe the different characteris-
tics of the diffusion process. Confirmation or rejection of the assumptions
underlying each model is then attained by fitting available observed data
and comparing the models’ performances. In particular, restricted models
where δα and/or δβ equal zero may be applied whenever data support this
constraint. The common market potential, m is equal to mα, in the first
phase and is allowed to change to mβ , in the second phase.
The model may also describe specific exogenous changes in the diffusion
speed of each competitor through the intervention functions xi(t), i =
1, 2, 3, (Bass et al., 1994). These functions are flexible structures (Guseo et
al., 2005) whose parameters are estimated simultaneously with the diffu-
sion parameters. As an example, an exponential shock could be modelled
through x(t) = 1 + ceb(t−a)I[t≥a], where a denotes the starting time of the
shock, b indicates how rapidly the shock decays towards 0, and c denotes
the intensity of the shock (either positive or negative). For details, about
inference, see Seber and Wild (2003) and, in particular for tests to com-
pare nested models and for confidence bands construction, see Guseo and
Mortarino (2015).

3 Application and results

For the application, we considered the yearly energy consumption (pro-
vided by British Petroleum, in Mtoe) for Switzerland and Sweden of Coal,
Gas and Oil (CGO), the Renewables, and Nuclear. Data cover the period
1965-2015, except for Nuclear energy, which enters the market in 1969 in
Switzerland and in 1972 in Sweden. Here, due to space limitations, only
results about Switzerland will be displayed.
We first applied the bivariate model (2CM) by Guseo and Mortarino (2014).
To do this, data for Nuclear were added to CGO as a unique competitor
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TABLE 1. Switzerland. Estimation results for the 3CM with the constraint
δα = 0. Parameters with subscript 1 refer to CGO, subscript 2 denotes the
Renewables and subscript 3 is used for Nuclear.

Par. Estimate Standard error Par. Estimate Standard error

mα 5.6640∗102 2.5184∗10−8 q2α 2.6544∗10−2 1.4468∗10−2

p1α 1.6178∗10−2 7.4599∗10−4 p2β 2.3531∗10−3 1.3310∗10−4

q1α 3.8451∗10−2 1.4468∗10−2 q2β 1.4661∗10−2 3.1345∗10−3

mβ 2.6052∗103 1.3844∗102 c2 1.2913∗10−1 6.3375∗10−2

p1β 4.8964∗10−3 2.4657∗10−4 b2 8.7119∗10−2 1.9123∗10−1

q1β 2.5030∗10−2 5.8230∗10−3 a2 47.5553 7.1297∗10−4

δβ -2.5424∗10−2 1.0066∗10−2 p3 -2.6718∗10−4 1.5258∗10−4

c1 2.6752∗10−1 1.5234∗10−1 q3 -1.1736∗10−2 8.2234∗10−3

b1 -1.8912 1.8674 c3 4.1973∗10−1 1.2489∗10−1

a1 8.6553 7.7069∗10−2 b3 -1.0201∗10−1 5.2892∗10−2

p2α 1.0018∗10−2 7.4599∗10−4 a3 20.0000 5.3474∗10−3

R2 = 0.987098

with respect to the Renewables. Then, we applied the 3CM to CGO, Nu-
clear, and the Renewables. Due to the fact that period α (when only CGO
and Renewables compete) is very short, we chose to fit a simpler model
with δα = 0. Table 1 thus shows the results. The model chosen includes a
positive shock for CGO in 1965+â1 ' 1974, a positive one for Renewables
starting in 1965+â2 ' 2013, and a positive one for Nuclear in 1965+â3 '
1985. Notice that the choice among alternative nested models cannot be
performed by looking at marginal confidence intervals for single parame-
ters, since, due to the curvature of the nonlinear parameter space, each
confidence interval represents only a specific section of the space and could
be very misleading. The choice of the best model, conversely, is performed
by evaluating tests to compare nested models based on the global fitting.
The significance of exogenous shocks is tested with the same approach.
Figure 1 shows fitted values, predictions and confidence bands for the 3CM.
We appreciate from the plot that in this country nuclear consumptions start
slowly from 1969 and reach their long-term level around 1984, thus their
evolution is very different from the profile observed for other fossil sources.
This suggests of course that data aggregation to reduce to 2 competitors
involves an important information reduction both for CGO and Nuclear.
Our interest is to examine in depth the consequences on Renewables de-
scription. Since the two models under comparison (2CM and 3CM) use
different data, it is not appropriate to make a direct comparison of global
goodness-of-fit measures. We thereby decided to evaluate the improvement
of the 3CM with respect to the 2CM, focusing on the Renewables.
Forecasts are made up to 5 years ahead, which is a reasonable forecasting
horizon in the energy market. Figure 2 highlights the final part of the
Renewables time series and the fitted values with 5-step-ahead forecasts
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FIGURE 1. Switzerland. Data, fitted values, and prediction confidence bands for
the 3CM.
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FIGURE 2. Switzerland. Predictions and confidence bands for the Renewables
with 3CM and 2CM.

obtained with 3CM and 2CM. Table 2 shows confidence band width for
the two models. The 3CM gives a reduction in terms of confidence band
width for forecasts from 1-step-ahead to 5-step-ahead.
Forecasting accuracy analysis results are proposed in Table 3. A wide set of
measures has been evaluated here: RMSE, MAPE, sMAPE, MASE (Hyn-
dman and Koehler, 2006), UMBRAE (Chen et al., 2017), and %Better.
Results are uncontroversial, since all the evaluated measures have smaller
values for the 3CM if compared with the 2CM at each of the 5 steps.
Analogous results have been obtained for Sweden.
In summary, this application shows the feasibility of the 3CM and high-
lights that a better description of the Renewables’ competitors obtained
by separating CGO and Nuclear data, results in a improved forecasting
performance for the Renewables.
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TABLE 2. Switzerland. Comparison between 2CM and 3CM: confidence band
width for forecasts from 1-step-ahead to 5-step-ahead.

step 1 step 2 step 3 step 4 step 5

2CM 3.0497 3.0799 3.1160 3.1585 3.2081
3CM 2.9349 2.9478 2.9618 2.9770 2.9936

TABLE 3. Switzerland. Comparison between 2CM and 3CM: forecasting accuracy
measures for Renewables predictions.

2CM 3CM

step 1 step 2 step 3 step 4 step 5 step 1 step 2 step 3 step 4 step 5

RMSE 1.604 1.976 2.260 2.763 2.368 1.287 1.653 1.891 2.225 1.959
MAPE 0.059 0.075 0.100 0.149 0.150 0.043 0.064 0.085 0.121 0.124
sMAPE 0.061 0.078 0.106 0.162 0.162 0.044 0.066 0.088 0.129 0.132
MASE 0.831 1.066 1.446 2.213 2.220 0.590 0.905 1.210 1.796 1.836
UMBRAE 2.095 2.042 1.146 1.713 2.044 0.994 1.759 0.779 1.404 1.689
% Better 29% 33% 40% 0% 0% 71% 33% 60% 25% 0%
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Abstract: We propose a novel approach for estimating mean survival time in the
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available methods.
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1 Brief introduction

Survival data analysis methods are the cornerstone of a wide range of sta-
tistical applications. While mean survival time is of utmost relevance, e.g.,
in health economics (Paltiel et al., 2009) or oncology studies (Zhao et al.,
2001), its estimation might be hindered in the presence of censoring, where
the time variable is only observed until a certain quantile. In practice,
censoring is almost always present, calling for specialised estimation tech-
niques. Several approaches have been considered to overcome this problem,
the most used amongst them, the restricted mean, computes mean sur-
vival time up to a specific cut-off time point (Irwin, 1949). Estimation of
the restricted mean, however, might be heavily affected by the presence
of censored observations, which will result in a loss of estimation accuracy.
Moreover, clinical relevance and interpretation of restricted mean estimates
remains unclear.

This paper was published as a part of the proceedings of the 33rd Inter-
national Workshop on Statistical Modelling (IWSM), University of Bristol, UK,
16-20 July 2018. The copyright remains with the author(s). Permission to repro-
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We present a novel mean survival measure based on observed quantiles that
divides the population in ordered fractions in which the mean survival can
be estimated separately. Interpretation of the estimates is straightforward,
as they refer to mean survival times for the specified fractions of the pop-
ulation. Similarly to the restricted mean, we estimate mean survival up to
a specific cut-off point, that we set to the last observed p-th fraction of
population to experience the event of interest. Our approach exploits that
the distribution of observed and censored events imposes differences in the
estimation accuracy of specific quantiles, i.e., those that are close to ob-
served events can be more precisely estimated than those located after the
occurrence of censored events. Therefore, estimates for certain fractions
can be really precise, which allows quantifying significant mean survival
differences across groups, even in scenarios where state-of-the-art methods
are unable to detect them.

2 Mean survival by ordered fractions

Let T be a non-negative random variable with E[T ] <∞ and let S(·) and
Q(·) denote its survival and quantile functions, respectively. An expression
for the expectation of T in terms of Q(·) is

µ = E[T ] =

∫ ∞

0

S(t)dt =

∫ 1

0

Q(p)dp. (1)

Given a grid of proportions {λ0, λ1, . . . , λK} with λk−1 < λk for all k ∈
{1, . . . ,K}, we can divide µ into separate components as follows

µ =

K∑

k=1

µk, where µk =

∫ λk

λk−1

Q(p)dp, λ0 = 0 and λK = 1. (2)

If we now weight each µk by its corresponding inverse proportion, we obtain

µk =
µk

λk − λk−1
,

where µk is the mean survival time for a specific fraction of population
delimited by (λk−1, λk). For example, if we consider (λ0, λ1) = (0, 0.5),
µ1 quantifies mean survival time for the first half of the population to
experience the event of interest.
In the presence of a censoring variable C, when Y = min(T,C) is observed
instead, the decomposition shown in (2) is of utmost convenience because
λK can be set to the largest proportion of observed events, that is, the one
corresponding to the last observed quantile. Note that when λK < 1, the
mean survival time for the λK-th fraction of the population observed to
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experience the event, does not correspond to the restricted mean computed
up to the last observed quantile y? = Q(λK). Indeed, while

µK =
1

λK

∫ λK

0

Q(p)dp

can be easily interpreted in terms of the population under study, the cor-
responding

µ? =

∫ y?

0

S(y)dy,

does not prove as informative.

3 Estimation and simulation results

In the presence of censoring, estimation of µk is possible via the Kaplan-
Meier estimator of the underlying survival function, Ŝ(·). Given Ŝ(·) and
the grid of proportions {γ0, γ1, . . . , γK} = {1− λ0, 1− λ1, . . . , 1− λK}, an
estimator for µk follows easily from equations (1) and (2), with

µ̂k =

Jk∑

j=1

yj [min{Ŝ(yj−1), γk−1} −max{Ŝ(yj), γk}]

=

Jk∑

jk=1

Q̂(pj)(pj − pj−1),

where yj denote observed event times such that Ŝ(yj) ∈ [γk, γk−1] for

all j ∈ {1, . . . , Jk}, and Ŝ(y0) ≥ γk−1 and Ŝ(yJk) ≤ γk. In this case,

we obtain a step-wise constant estimator of the quantile function Q̂(·), in

which observed times yj play the role of estimated quantiles Q̂(pj) of order

pj = Ŝ(yj).
We tested the performance of µ̂k in different scenarios, all yielding anal-
ogous conclusions. In Table 1 we present results for a simulation study
of 5, 000 data sets with 200 samples each, generated from a time variable
following a log-logistic distribution with scale α = 1 and shape β = 2.
The censoring variables were sampled independently from a uniform dis-
tribution in (0, 7/3), yielding an average censoring rate of 50%. Estimated
average upper and lower bounds for µ̂k where computed integrating over
equal precision confidence bands for the Kaplan-Meier estimator (Nair,
1984). We observed that our estimates’ precision decreased with increasing
k (that is, the bands widened with increasing k), which was expected, as
the proportion of censored observations also increased with k and fewer
events were observed. In this sense, we might say that some µk can be
more precisely estimated than others, which proves a highly useful tool in
application settings.
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TABLE 1. Results for 5, 000 simulations of 200 samples from a log-logistic model
with scale α = 1 and shape β = 2 with censoring variable uniform in (0,7/3), cor-
responding to an average censoring rate of 50%. True (µk) and average estimated

(µ̂k) values, with average lower (µ̂Lk ) and upper (µ̂Uk ) bounds for 5 fractions of
population, % of simulations (nsimk) in which µ̂k could be computed and average
number of observed events (dk) are reported. The average bound marked with ?

had finite values in 75% of the simulations.

k λk µk µ̂k µ̂Lk − µ̂Uk nsimk dk

1 0.20 0.064 0.064 0.044− 0.086 100% 34
2 0.40 0.131 0.132 0.101− 0.175 100% 29
3 0.60 0.201 0.202 0.156− 0.264? 100% 23
4 0.80 0.311 0.304 0.226−∞ 70.7% 14
5 0.95 0.420 0.307 0.239−∞ 5.80% 4

4 Application example: Survival after bone marrow
transplant in lymphoma patients

We analysed data on 35 patients with lymphoma that received either an
allogenic or an autologous bone marrow transplant, that is, they received
marrow either from a a compatible donor or their own after chemotherapy
treatment and cleansing, respectively (Avalos et al., 1993). The aim of the
study was to find differences between lymphoma-free survival after having
received either type of transplant. After 2.5 years of follow-up, 26 patients
had died or relapsed and the censoring rate was 25.7%. The estimated
survival curves for both treatments are shown in Figure 1.
While restricted mean survival estimates did not detect any significant dif-
ference in mean survival between the allogenic and autologus transplant
groups (restricted mean difference of 146.5 days, with 95% confidence in-
terval (−29.71, 322.7))), our approach showed that among earlier failures
that difference was actually significant. In particular, considering the weak-
est 10% of the patients, that is, the first 10% to die or relapse after receiving
the transplant, mean survival difference was estimated at 32.15 days (95%
CI (13.98− 50.31)) favouring those who received the autologus transplant.
In Table 2 we show the results of mean survival time differences after re-
ceiving a bone marrow transplant by deciles of population up to the 80th
percentile (last fraction commonly observed in both groups). Our estimates
could detect an improvement on lymphoma-free survival for the autologus
transplant group amongst at least the weakest 20% of patients, providing
a useful guide for effective decision-making in further studies.
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FIGURE 1. Estimated Kaplan-Meier survival curves after bone marrow trans-
plant for lymphoma patients that received allogenic (solid line) or autologus
(dashed line) transplant.

TABLE 2. Estimates for mean survival differences between allogenic (µ̂0
k) and

autologus (µ̂1
k) bone marrow transplants with bootstrapped 95% confidence in-

tervals by ordered deciles of population.

k λk µ̂1
k − µ̂0

k 95% CI

1 0.1 32.15 13.98− 50.31
2 0.2 36.72 2.843− 70.60
3 0.3 26.23 −19.94− 72.43
4 0.4 28.98 −40.51− 98.48
5 0.5 32.80 −124.5− 190.1
6 0.6 80.60 −1283− 1444
7 0.7 349.4 −446.4− 1145
8 0.8 441.4 −130.3− 1013

5 Final remarks

Our approach for quantifying mean survival time takes advantage of the
information contained in the data and deals with the censoring hurdle. Our
proposed measures are easily interpretable, providing a useful alternative
to the restricted mean, which poses interpretation difficulties. By dividing
the study population in ordered fractions, we provide a detailed picture of
the underlying probability distribution and are able to detect mean survival
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differences across groups that are often undetected by other state-of-the-art
methods. Results from a simulation study show good performance of our
proposed estimation strategy, and support the idea that mean survival can
be more accurately estimated in some fractions of the population. While
estimation of the mean survival time presents several difficulties in the
presence of censoring, that same quantity can be precisely estimated for
certain fractions of population. In the analysis of survival data from a bone
marrow transplant study, our method detected differences in mean survival
between given transplants for certain fractions of population, while those
differences were overlooked when using restricted mean estimates instead.
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Abstract: One of the important pieces of information that are needed to inform
very early decision-making immediately after a nuclear or chemical accident is
how experts (plant designers and safety engineers) believe source emission will
develop over time. To address this issue it is essential first to code as much
expert opinion as possible about the types and profiles of release, and secondly,
to modify these opinions - which are often very uncertain- in the light of any
observations which do become available. In this article we present an uncertainty
management procedure for the height release at source which is a key parameter
in modeling the subsequent dispersal of contamination (e.g. the higher the release
goes, the faster it spreads). When setting the initial parameters of the model, it
is difficult to estimate the height of the release and this will obviously affects the
consequences. This procedure reduces the risk of setting an erroneous height value
by running mixed model. That is, we include several models in our analysis, each
with a different release height. The Bayesian methodology assigns probabilities to
each model representing its relative likelihood and updates these probabilities in
the light of monitoring data. This has the effect that the data gives most weight
to the most likely model, and thus models which consistently perform badly
can be discarded. An illustration, based on running the sequential learning with
an atmospheric dispersion model, is given on a real site under real atmospheric
conditions but with simulated observational data.

Keywords: Dispersion models; Puff models; Bayesian forecasting.

1 Introduction

Atmospheric deterministic dispersion models are widely used for forecast-
ing toxic contamination and obtaining results in real time with varying
degrees of accuracy. The large degree of uncertainty associated with their

This paper was published as a part of the proceedings of the 33rd Inter-
national Workshop on Statistical Modelling (IWSM), University of Bristol, UK,
16-20 July 2018. The copyright remains with the author(s). Permission to repro-
duce or extract any parts of this abstract should be requested from the author(s).
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predictions is one of the most significant problems. These uncertainties may
lead to a destabilization of the decision process when environmental survey
results disagree with the model results.
This article is based on a Bayesian statistical model described in Smith
and French (1993). The statistical model is carried out within a Bayesian
paradigm Box and Taio (1973), French (1986) and West and Harrison
(1997).

2 Atmospheric dispersion models: Puff Models

The basic principle for a computational puff model for predictions of at-
mospheric dispersion is the simulation of the continuous emission from the
source by a proper distribution of discrete sequence of small puffs of differ-
ent sizes Leelossy (2014). These are released at regular time intervals and
then diffuse and disperse independently.
A Bayesian model based on generalization of the puff model has been
adopted both to combine the puff model with expert judgments and mon-
itoring data, and to provide an evaluation of the uncertainty associated
with the forecasts.

3 The statistical model

Following Smith and Frensh (1993), the puffs are indexed such as puff i is
Q(i), i.e. Q(i) is uncertain quantity which represents the total number of
contaminated particles under the ith puff. We defineQt = (Q(1), . . . , Q(t))T

which approximates the release profile of the source term.
The spatial concentration of contamination from the ith puff at time t and
location s is given by Ft(i, s)Q(i), the, the stochastic multiplier. This mul-
tiplier determines how that emission is distributed over the space and time.
It is a proportional of the total contaminated particles under the ith puff
at site s and time t. Typically, Ft(i, s)Q(i). is a complicated deterministic
function of parameters, themselves calculated from uncertain meteorologi-
cal inputs. One of the simplest of such dispersal models is a Gaussian puff
Pasler-Sauer (1985), which sets

Ft(., s) =
1

(2π)3/2σt(1)σt(2)σt(3)
exp{−1

2
[Σ2
j=1

(sj − ut(j))2

σ2
t (j)

+
(s3 − h)2

σ2
t (3)

]}

where (u(1), u(2)) is a wind velocity vector possibly depending on t, and h
is the height of the emission. The radial growth of puffs during dispersion as
a result of internal turbulence is described by the parameters (σt(1)σt(2))
and σt(3) which denote puff sizes in horizontal and vertical directions re-
spectively.
Initially the stochastic multipliers Ft(i, s) are assumed to be known, and
we only consider uncertainty on masses. However, in the rest of the paper
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we will address uncertainty on certain parameters of Ft(i, s) such as the
release height of the emission. Instant concentrations at monitoring sites
are linear functions of Qt. Let Y (t, s) denote an observation taken under
some overlapping puffs at time t at location s. Here Y (t, s) represents the
total number of contaminated particles, i.e. the concentration of contami-
nation which is simply the sum of concentrations of all puffs where the ith

puff contributes a proportion Ft(i, s) of its total mass Q(i). Thus Y (t, s)
will be a noisy function of the true contamination θ(t, s) originating from
Q(1), . . . , Q(t). This needs to be stochastically modeled as

θ(t, s) = Σti=1Ft(i, s)Q(i) + ε(t, s)

For simplicity we assume that ε(t, s) are Gaussian with mean zero and
variance V (t, s), and ε(t, s1), ε(t, s2) are independent of sites s1, s2. Simply
(Y (t, s)|θ(t, s)) is defined to have a Gaussian distribution with mean θ(t, s)
and a fixed variance V (t, s) where θ(t, s) is assumed to be known and
represents the observation and modelling error.
Now conditioning on everything else other than masses, the model provides
elegant algorithms to: update distributions of the source term in time; pre-
dict contamination over space and time; and hence obtain predictive distri-
butions of data and also to admit data assimilation. However, in practice
many of the variables conditioned on will be unknown. For example, we
may be uncertain about parameter like the release height and we know
that this parameter is very important in the stochastic multipliers Ft(i, s).
This problem will be discussed in the next section.

4 Uncertainty about the release height

As we stated in the previous section, the true source emissionsQ(1), Q(2), . . . ,
where Q(i) denotes the mass of contamination under the ith emitted puff,
can be modelled as a dynamic linear model(DLM) West and Harrison
(1997), with state θt = QTt . Explicitly,

Qt|Qt−1 ∼ N(GQt−1,W ).

Where G (observational matrix) and W (evolution matrix) are fixed square
matrices.
The DLM can be combined with a puff model to estimate the source term
profile and predict the contamination spread as long as we believe the
model.
The height of release at source is a key parameter in the subsequent disper-
sal of contamination. (e.g. the higher the release goes, the faster it spreads)
. When setting the initial parameters of the model, it is difficult to esti-
mate the release height and this will obviously effect the consequences Gar-
goum(2001). Here we suggest one solution to this problem, which reduces
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the risk of setting an erroneous height value, by running mixed models.
That is we include several models in our analysis, each with a different re-
lease height. The Bayesian methodology assigns probabilities to each model
representing its relative likelihood and updates these probabilities in the
light of monitoring data. This has the effect that the data give most weight
to the most likely model, and thus models which consistently perform badly
can be discarded.

4.1 The Bayesian updating algorithm

Suppose that we have m dispersal models M (hi), (i = 1, . . . ,m), where the
dispersal algorithms were the same but whose parameters were different
(e.g. the initial height parameter h of source emission). Suppose that one
of the models (as yet uncertain to us ) is assumed to be true. Let

p(M (hi)(is true)) = p
(hi)
t−1 = p(M

(hi)
t−1|Dt−1) = πi.

Where Σmi=1 = 1, πi > 0, 1 ≤ i ≤ m and Dt−1 represents data available up
to time t−1. Here hi and πi are chosen to give approximations in the prior
of the release height.Then the probability of an event A (e.g. A might be
an observation of contamination at site s lies in the interval [a, b] is given
by

p(A) = Σmi=1πipi(A).

Where p(A) is the probability attributed to the event A by the model
M (hi), i = 1, . . . ,m. Note that if θ(t, s) is the density of contamination at
sites and time t, then

E[θ(t, s)] = Σmi=1πiEi[θ(t, s)]

where Ei[θ(t, s) is the expected contamination under model M (hi), (i =
1, . . . ,m), at site s and time t.
The Bayesian algorithm allows the updating of π = (π1, . . . , πm) in a sim-
ple manner, following the principles of parallel processing of multi-process
models, Class I, as introduced in Harrison and Stevens (1976) and West
and Harrison (1997). Suppose an event B = {Y = y} has a density value
under model M (hi), (i = 1, . . . ,m) of pi(y). Then, for an arbitrary eventA,

p(A ∩B) = Σmi=1πipi(A ∩B)

where p is the probability of the combined model and pi is the probability
coming from M (hi), (i = 1, . . . ,m). So

p(A|Y = y)p(y) = Σmi=1πipi(A|Y = y)pi(y)

where
p(y) = p(B) = Σπipi(y)
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This implies that, given Y = y, our updated probability p∗(A) = p(A|Y =
y) A is given by

p∗(A) = Σπ∗i p
∗
i (A)

where
pi∗i = pi(y)πi

Σmj=1pj(y)πj

This procedure can be implemented where certain heights are taken as
representing the a priori plausible range of height values and their initial
probabilities are assigned, then the posterior probabilities for these heights
are calculated each with its corresponding expected dispersal. This imple-
mentation is briefly discussed in the following subsection.

4.2 Illustration

Bayesian updating of dispersal contamination, based on running the se-
quential learning with RIMPUFF atmospheric dispersion model, is used
on a real site (Lundtofte Nord1) under real atmospheric conditions but
with simulated observational data.
Assuming that A = {h1 = 200m,h2 = 400m,h3 = 600m} are taken as
representing the a priori plausible range of height values their initial prob-
abilities are assigned as πi = 1

3 , (i = 1, 2, 3). The posterior probabilities
for the three heights were calculated. The models were rather different:
Model 3 with height 600m had a higher posterior probability = 0.51 at the
time of interest compared to the other two models, 0.16 for model 1 and
0.32 for model 2. Note that if one of the models had a very high posterior
probability at the time of interest, then it could be adopted alone for in-
ference. Otherwise, the full unconditional mixture would be used for this
purpose.

5 Conclusion

Expert judgments about key parameters, such as source height and wind
direction, in dispersal models are extremely informative and can be ac-
commodated into Bayesian uncertainty management in puff models. Even
where the parameters of the profile are extremely uncertain a priori, the
forecasting systems quickly fit to their empirically values. To improve the
model effectiveness and manage uncertainty about the release height we
proposed to include several models in our analysis to reflect potential errors
in this parameter. Hence, the model as described in this paper estimates
and provides distributions for source term and release height at the source.
Simply, we place a discrete distribution over a set of values of the height,
using expert judgments to assign prior probabilities over the set of values.
The dispersal model is run for each vector of parameter values for the set
of observations that had been taken. Bayes rule then allowed us to update
the probabilities and as new information arrive we could update again and
so on.
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Abstract: In this paper we consider statistical modelling of volcanic earthquake
data. In particular, we investigate the use of Bayesian analysis with Markov Chain
Monte Carlo (MCMC) to estimate the parameters of point process models, and
make inferences on the models, applied to data collected from the Tungurahua
volcano in Ecuador.
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1 Introduction

This paper aims to use statistical modelling to describe the occurrence of
volcanic earthquakes. The main approach taken is that of using Bayesian
analysis with Markov Chain Monte Carlo (MCMC) to fit point process
models to the available data, collected from the Tungurahua volcano in
Ecuador.

2 Dataset and modelling

This dataset was recorded in July 2013, and consists of a series of event
times which were picked from a stretch of seismic data to identify the
individual earthquakes. The dataset was examined in a study by Bell et al.
(2018).
The events started at 6:00 on 13 July, and the eruption occurred at 11:46
on 14 July. The event rate grew increasingly up until eruption. Plots of
the data show that the event rate grows at an increasing rate up to the

This paper was published as a part of the proceedings of the 33rd Inter-
national Workshop on Statistical Modelling (IWSM), University of Bristol, UK,
16-20 July 2018. The copyright remains with the author(s). Permission to repro-
duce or extract any parts of this abstract should be requested from the author(s).
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eruption, with the inter-spike interval (ISI) duration changing from over
10 minutes to below 30 seconds. The ISIs are “quasi-periodic”, being more
regular than would be seen if the events followed a Poisson process, and
thus not independent (Bell et al., 2018).
Applying a material failure approach to describe the physical processes
leading a volcanic system to an eruption, the accelerating rate of earth-
quakes is described by a power law relationship (Bell et al., 2018):

λ(t) = k(tf − t)−p,

where k is a constant (related to the amplitude of the signal), tf is the
time of eruption, and p = 1

a−1 is a parameter describing the non-linearity
of acceleration. At time tf , the rate becomes instantaneously infinite, rep-
resenting the eruption (Bell et al., 2018). In the model, λ(t) is the intensity
used in the inhomogeneous gamma (IG; parameter α) point process.
Details of the MCMC implementation in PyMC3 were investigated, includ-
ing the sampling method used and the initialisation process. Attributes of
the MCMC chain, such as convergence, were examined. Posterior checks
were performed using simulated data, to sense check whether the model
appears appropriate. The fit of the model was assessed further using sta-
tistical methods.
The MCMC approaches considered included:

• No-U-Turn sampler (Hoffman and Gelman, 2014);

• Metropolis;

• Slice sampling (Neal, 2003).

Alternative models were also investigated, and their fits compared to that
of the given inhomogeneous gamma model: inhomogeneous Poisson (IP),
inhomogeneous inverse Gaussian (IIG) and inhomogeneous Weibull (IW)
models.

3 Results

Figure 1 gives comparison of the MCMC trace plots for the methods for
the IG model. Figures 2 and 3 show posterior plots using MCMC sampled
values for the IG model. A Kolmogorov-Smirnov goodness of fit approach
(Barbieri et al., 2001; Ogata, 1988) gives an effective method of comparison
of various possible models.
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Figure 2.5: Trace plots, first 2k iterations (NUTS, Metropolis, Slice)

2.6 NUTS further analysis

2.6.1 Convergence

To test convergence, 10 chains were run in parallel, starting at randomly selected initial
points. It can be seen from the trace plot in Figure 2.6 that all of the chains appear to have
converged to the same distribution. Moreover, the parameter means of each of the chains
(shown in Table 2.1) did not vary by more than 0.1 for α, tf , p, and by no more than 1 for
k, from the values presented in Table 2.2, which also indicates convergence.

Table 2.1: Mean values of parameters for each of 10 randomly started chains

Chain α k tf p

1 2.476 340.827 1.422 1.508
2 2.474 339.679 1.420 1.501
3 2.475 340.564 1.421 1.501
4 2.476 338.639 1.418 1.495
5 2.476 341.698 1.422 1.506
6 2.477 339.795 1.420 1.500
7 2.475 340.430 1.421 1.503
8 2.474 340.166 1.420 1.500
9 2.475 339.651 1.420 1.500
10 2.475 341.572 1.423 1.509

Gelman-Rubin statistic

The Gelman-Rubin statistic is very close to 1 for all the parameters, indicating that there
is no clear evidence against convergence (Gelman and Rubin, 1992).

R̂(α) = 1.00001, R̂(k) = 1.00026, R̂(p) = 1.00021, R̂(tf ) = 1.00022

17

FIGURE 1. Trace plots for 2,000 iterations: IG model. No-U-Turn sampler (left),
Metropolis (middle), Slice (right).

Figure 2.8: Autocorrelation plot, 20k iterations, excluding burn-in

Figure 2.9: Posterior plots using MCMC sampled values

19
FIGURE 2. Posterior plots using MCMC sampled values: IG model.
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be explained by these parameters being correlated with each other, as can be noted from
Figure 2.9 which shows scatter plots of the parameter values from the samples drawn from
the posterior (generated from the code in Appendix A.1 provided by Dr. A. Bell (2017)).
Lower (higher) values of k tend to occur with lower (higher) values of p and tf .

For α, there is no such visible autocorrelation with the other parameters, as the scatter
plots of k, tf , and p with α shows a lack of discernible trends.

The NUTS sampler works effectively in such situations where some of the parameters are
correlated, however this significantly slows down other samplers like the Metropolis and Slice
sampler, in line with the earlier findings.

2.6.3 Thinning

Thinning is a process by which every k-th iteration of the chain is kept, and the rest are
discarded. This has the effect of reducing autocorrelation within the chain, and reduces Monte
Carlo error. However, the discarded values still carry some information about the posterior
distributions. Thus, given that there are no practical restrictions on memory storage in this
case, thinning is not considered necessary.

2.6.4 Results

The posterior distributions, with 95% highest posterior density intervals (HPDIs), are
shown below in Figure 2.10, with values given in Table 2.2. The resulting HPDIs are reason-
ably narrow, and the distributions have regular unimodal shapes.

Figure 2.10: Posteriors (excluding burn-in), 20k iterations NUTS

Table 2.2: IG model parameters

Parameter Mean Std. dev. 95% HPDI

α 2.476 0.117 [2.252, 2.710]
k 339.893 33.207 [285.102, 408.778]
tf 1.420 0.060 [1.310, 1.539]
p 1.501 0.175 [1.175, 1.852]

20

FIGURE 3. Posteriors with HPDs: IG model.

4 Conclusions

An IG model was found to produce satisfactory results. It was demonstrated
that the MCMC chain appears to converge to the correct stationary distri-
bution, providing reasonable posterior estimates. From review of simulated
data, and Q-Q and K-S plots, it was found that the IG model fits the July
2013 data very well. A small number of outliers (around 5% of the data)
was noted, and found to correspond to spikes with long preceding ISIs.
Some lack of fit was also found in the middle quantiles of the K-S plot,
however this only slightly breached the 95% error bounds.

Acknowledgments: We are particularly grateful to The Instituto Geosico
of the Escuela Politecnica Nacional (IGEPN) of Ecuador for all their hard
monitoring work and providing the data.
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Abstract: Prostate cancer (PCa) represents a significant healthcare problem
due to the dilemmas associated with its detection and treatment especially with
the projected increase in its incidence in Ireland and internationally. The critical
clinical question driven by the urologist and patients is the need for a biopsy. An
Irish prostate cancer risk calculator created from a national collection of patients
can allow for individualised risk stratification and can be used to improve clini-
cal decision making in Irish men under investigation for PCa. Relative statistical
approaches using the current clinical parameters considered building a risk calcu-
lator based on the Irish dataset which aims to inform clinicians and patients as to
the need for a biopsy to diagnose PCa. The use of this risk calculator will impact
on the patients’ outcome and quality of life but also alleviate the pressures on
our already overburdened healthcare sector by reducing the need for biopsies.
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1 Introduction

Patients and clinicians are faced with the dilemmas associated with the
detection and treatment of Prostate cancer (PCa). One such dilemma is in
the early stages of diagnosis when men are referred by their GP for suspi-
cion of prostate cancer due to their an elevated Prostate-specific antigen
(PSA) value or suspicious Digital rectal examination (DRE), but it is not
clear if they need a biopsy. This is because PSA is not specific for PCa
which has led to the overdiagnosis and treatment of disease exposing men
to unnecessary biopsies, worry about their diagnosis and treatment im-
pacts on their quality of life. Accurate risk stratification of patients before
biopsy would help to reduce overdiagnosis and lead to better clinical deci-
sion making. The European Randomised Study of Screening for Prostate
Cancer (ERSPC) and the Prostate Cancer Prevention Trial (PCPT) are
two well-known international risk calculators available for diagnosis of PCa.
They have been tested in an Irish population and proved to be beneficial;
however, we hypothesis that the predictive accuracy will be significantly
improved when built with an Irish population. This study aims to build an
Irish risk calculator and compare to the PCPT risk calculator.

2 Methods

A national dataset including the routinely used clinical information of 4801
patients from the eight Irish tertiary referral rapid access clinical centres
were collected. A risk calculator for the diagnosis of PCa (and high-grade
PCa) was created using a logistic regression model including linear and
non-linear effects of components such as age, digital rectal examination,
family history of PCa, prior negative biopsy and PSA level. The calibra-
tion curve is used to assess whether the models are well calibrated, and
models are validated using Cross-validation.
The discriminate ability of the model was compared with the current
biomarker indicator (PSA) and PCPT risk calculator using various graphi-
cal and numerical performance outcome summaries. The Receiver operating
characteristic (ROC) curves, decision curve analysis are standard graphical
tools, and sensitivity, specificity, Positive predictive value (PPV), Negative
predictive value (NPV), Youden index and Area Under the ROC Curve
(AUC) are available numerical summaries. The visual and numerical com-
parisons for predicting PCa are represented in Figure 1 using the ROC
curve and decision curve, and Table 1 using AUC, where they show the su-
periority of the proposed risk calculator to the current biomarker indicator
(PSA) and PCPT risk calculator.
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TABLE 1. Area Under the ROC Curve, 95% confidence interval and p-value of
Delong test to compare three approaches.

Models AUC 95% CI p-value

PSA 0.59 0.58-0.61 <0.001
PCPT 0.63 0.62-0.65 <0.001
IPRC 0.67 0.66-0.69 -

FIGURE 1. ROC curve (at the left) and decision curve (at the right) for predicting
prostate cancer.

The diagnostic ability of the IPRC is compared with the PSA blood test in
Figure 2. It shows a 13% reduction in unnecessary biopsy and 6% in total
biopsies.

PSA test

IPRC
2548 Prostate cancer

1579 high-grade cancer 969 low-grade cancer

highgrade detected

1292 1292
highgrade not detected

287 287
lowgrade detected

296 404
lowgrade not detected

673 565

4801 patients

2548 prostate cancer 2253 no prostate cancer

Cancer detected

2022 2022
Cancer not detected

526 526
Not biopsied

644 857
Unnecessary biopsied

1609 1396

FIGURE 2. The diagnostic ability of PSA compared to IPRC.

In the year 2010, 14291 men went for a prostate biopsy, where only 3287
(23%) were diagnosed with cancer (Burns 2010). Our test could have re-
duced the number of biopsies by 858. This reduction in annual biopsies will
also result in a significant economic savings of about e371,000 excluding
the cost of dealing with biopsy complications.
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The proposed model calculates the risk of having prostate cancer as a prob-
ability; however, an optimal threshold needed to be chosen to make the best
clinical decision. The selection of this threshold could be challenging as it
depends on a trade-off between a more sensitive test or a more specific
test. For this reason, an interactive Shiny application is created to be pre-
sented to clinicians and decision makers which combine the graphical and
numerical summarises to convey the result of this risk calculator in the
most translated way. A screenshot of this application is given in Figure 3.

FIGURE 3. A Visualisation tool of the threshold selection for the prostate cancer
model.

3 Discussion

An Irish PCa risk calculator created from a national collection of patients
in Ireland can allow for individualised risk stratification and can be used to
improve clinical decision making in Irish men under investigation for PCa.
The development of the Irish Prostate Cancer Risk Calculator has shown
a significant reduction of unnecessary biopsies, without affecting prostate
cancer detection or significant disease, outperforming the current approach.
This will reduce the number of men requiring a biopsy and their exposure
to its side effects, as well as lightening the pressure on our already over-
burdened healthcare system and have economic savings.
We are currently investigating the integration of current and novel biomark-
ers to increase the sensitivity and specificity of the risk calculator, in order
to further reduce the number of men needing a biopsy in Ireland.
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Abstract: The Triathlon is an Olympic event that affects the entire city. This
STEM paper is to manage the road closure time of a triathlon event in any City
who may have a Triathlon event. In order to quantify the Road Closure Impact
to meet 5.5 hours of closure time, authors have developed three different models:
(1) Ideal Scenario, (2) Practical Scenario, and (3) Potential Scenario. In the first
Ideal Scenario, authors applied Minitab descriptive statistics and box plots to
optimize the event schedule and sequence among three Triathlon sports (Swim,
Run, and Bike). In the second Practical Scenario, authors have managed the
risks such as: pre-event preparation time, award ceremony time, dependency on
Gender, Age, Category factors, 2000+ players, Safety/Health, etc. In the last
Potential Scenario, we have further optimized the Zone Close and Open period.
We can minimize the Zone wasted usage (waiting for players) based on the Worst
Case Scenario. The biggest selling point of this paper is not just on the Closure
Cost reduction, but also on the Safety/Health protection as well as promoting
customer service and local business. This event may be completed on the event
day, but our excellent customer service can attract more visitors to join the next
city event.

Keywords: Triathlon, Descriptive Statistics, Minitab, Model, Non-Parametric

1 Introduction

Triathlon is a multisport event consisting of sequential swim, cycle, and
run disciplines performed over a variety of distances1. The Purpose of this
paper is to build an accurate model to manage a triathlon event in a city.
There is one concern / restriction; the road closure time for the triathlon
event has to be less than or equal to 5.5 hours in order to minimize the
impact to the local people and business. We used data from 2017 HiMCM

This paper was published as a part of the proceedings of the 33rd Inter-
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competition. In order to make that happen, we need to build a model that
could tell us critical information like when we should hold the event, how
are we going to arrange the sequence among the three sports etc. We will
apply Minitab descriptive statistics, and three models to optimize the Road
Closure time and area.

2 Building three Models

Three different models were constructed for three different scenarios; one
being the ideal scenario, assuming that no unexpected events such as in-
juries, weather concerns occur. Therefore, the first ideal model may not be
practical and needs certain improvements.
The second model is the practical scenario, in which we consider the pos-
sible risks such as injuries, effect on local traffic and life overall, weather
concerns, age dependency etc. We will take those into account and consider
possible changes to the arrangement of the event in a practical sense.
The third model is the potential model, where we will figure out smarter
ways to further optimize road closure time by sharing the streets between
two events simultaneously to ensure we can finish the event and possibly
add introduction and award ceremony and still being able to hold the road
closure time to under 5.5 hours.
In these models, Minitab software and descriptive statistics will be applied.

3 Results

There are so many factors and constraints hidden in the project. There are
so many alternative solutions which can resolve some problems if not all.
There is no perfect scenario and all decisions are down to risk assessment
and risk management. Based on the hypotheses, we run the raw data and
build three models accordingly. The objective is to find a model which can
meet 5.5 hours road closure time and also take care of safety and health
concerns during the events.

3.1 Model 1: Ideal Scenario

This is an ideal model, assuming that everything runs perfectly and smoothly.
First, we will apply one rule; we won?t invite any player who cannot finish
the triathlon within 4:16:46 based on upper outlier criteria in order to con-
trol the total event time within 5.5 hours as shown in Figure 1. We used
upper outlier criteria statistically in order to set a reasonable bar fairly.
Upper Outlier Criteria = Q3 -1.5* IQR IQR= Q3 - Q1 Q3= 75th Percentile
Q1= 25th Percentile
The reason why we chose a box-plot is because it shows us the distribution
with many outliers. After applied Rule No.1, we re-plot the Box-plot as
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FIGURE 1. Box-plot for total time to finish the triathlon

shown in Figure 2. We have excluded all the players with record beyond the
upper outlier limit at 04:16:46. Total 59 players (2.8 percent) got impacted.
The new distribution looks a normal distribution.
The next step is to determine how will we arrange the sport sequence. We
need to make sure there is no significant overlap between the Bike and Run
for safety reason if any collision risk happened between Bike Player and
Run Player. We will first look at the distribution of three sports. As shown
in Figure 3 Box-plot, we have observed the individual distribution of three
sports. The Bike event has both the highest mean and the widest range.
This boxplot shows the time distribution of the three sports, as swim takes
the shortest time and bike takes the longest. We should start Swim Event
since the event is happened in the Ocean. We should take shorter Run event
first over the longer and wider Bike event. Also, Bike event will take larger
closure area. Therefore, the Bike event should be after the Run event.
We will also apply the second rule to disqualify any player who cannot
complete both Swim and Run event within 01:48:32 based on the upper
outlier criteria. Similar to first rule, the second criteria is necessary in order
to ensure the entire road closure time is within 5.5 hours.

3.2 Model 2: Practical Scenario

This is the practical model that takes in more consideration on whether
we should reserve any event preparation time in the beginning and hold an
award ceremony in the end; how to handle players impacted by the rules
listed in previous model 1? And also should we separate male and female
participants to shorten the total road closure time?
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FIGURE 2. Box-plot for total time to finish triathlon after excluding outliers.

FIGURE 3. Boxplot on distribution of swim, bike and run.



82 Triathlon Road Closure Control

FIGURE 4. Results from Minitab software.

We constructed the Non-Parametric Mann-Whitney Test for Median as
shown in figure 4 since our raw data distribution is not normal and we
have too many outliers which will distort the mean location. The reason
why it is not normal is because pacing strategies during triathlon are highly
influenced by distance and discipline.
This shows that there is no significance (p value significance is above 0.05)
on separating genders in the Triathlon event.

3.3 Model 3: Potential Scenario

Model 3 is the potential model that considers: How do we further optimize
road closure time? Should we place these senior players in the back line
when starting the Swim event? Can we claim any age dependency?
In order to answer these questions, we constructed a scatterplot and re-
gression model by Minitab software as shown in Figure 6.
We chose scatterplot because it may show us any correlation between the
total time and age. As shown in the graph, the R-Square is only at 0
percent (random pattern), which means Age is not a factor that affects the
participants? finish time.

4 Conclusion

We will start Triathlon event with swim, then run, and bike based on the
cycle time distribution and safety consideration. In order to meet 5.5 hours
of road closure time requirement, we need to apply 2 disqualify rules to
shorten the event duration. We will also hold the award ceremony in the
end, and we will not separate male and female players or by age factor,
as our model shows that there is no significance in doing so. We will take
safety risk as top priority.
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FIGURE 5. Scatterplot on age dependency.
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Abstract: Our team has designed a special game on which we apply Statistics,
Probability, and Java to simulate each game move and predict the winning sce-
nario. We applied binomial probability distribution to build a predictive model
that could simulate the gaming sequence between two players. The sample size
was determined based on two hypotheses: (1) playing sequence and (2) winning
patterns. In this project, we identified four winning patterns and used Java to
code these patterns and determine the gaming sequence and consequence based
on conditional probability. The Java results were then compared to the Predic-
tive Model to conduct objective root cause analysis for further improvement and
optimization. Human behavior was also considered to study the beginner level to
the more advanced level. Based on the 2- Proportions Tests, team has achieved
> 95% confidence that the optimum model can accurately predict the gaming
sequence and winning probability which are verified and validated by Java simula-
tion. Team has been through a systematic Six Sigma DMAIC process, and typical
Team Building Cycle (Forming, Storming, Norming, and Performing). This is a
good STEM Project for teaching kids on learning and applying Statistics, Java
Programming, Problem Solving, and Team Building Dynamics.

Keywords: JAVA; Statistics; Probability; Predictive Modeling.

1 Section 1

The purpose of this project is to design and implement a program that
can be used in the future as basis for the development of an AI for use
in medical research. The use of simulation has been theorized by scientists
Toupo and Strogatz to predict evolution in nature, and by Fu and Hauert
to predict changes in social behavior. Because there is an increasing amount
of medical data available, we decided to design a JAVA program that could
later use this data for medical purposes. By setting different conditions on
the game we designed, we were able to uncover different player patterns.

This paper was published as a part of the proceedings of the 33rd Inter-
national Workshop on Statistical Modelling (IWSM), University of Bristol, UK,
16-20 July 2018. The copyright remains with the author(s). Permission to repro-
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1.1 Section 1.1

The 3-chips game we designed has 4 rules:
1. There are three groups of chips with different number and color in each
group as the initial game condition (e.g. 10 Red chips, 8 Yellow chips, 6
Green chips). The initial condition can be randomly assigned as long as
there is NO identical number of chips in any two groups such as (X, X, Y).
2. There are two types of players (Player Type A and Player Type B) who
will play each other. One player will go first, and then two players will take
turns until completed the game. Player Type A is not aware of any game
rules. Player Type B is aware of all four game rules.
3. During each round, the player will decide one group (could be Red, Yel-
low, or Green) and remove at least one chip up to all of the remaining chips
from that particular group.
4. The player picked the overall last chip will be the loser of the game.
We have brainstormed two hypothesis
1. Can we use basic probability to predict the winning probability among
players who know the above rules or who don’t know any of the rules?
2. Will the playing sequence (who goes first) impact the winning probabil-
ity?
In order to test these to hypotheses, we set up 4 cases: Case I(Player A v
Player A), Case II(Player B v Player B), Case III(Player A v Player B),
and Case IV(Player B v Player A). Player A doesn’t know the winning
patterns, but Player B does.

1.2 Section 1.2

In order to save time in collecting our data, we wrote a JAVA program
that would play the game for us. After playing the game several times on
our own, we discovered some winning patterns that would be the basis for
Player B’s programming. After running each case 209 times, we recorded
and analyzed our results.

2 Section 2

Case I: two Type A players played each other. Among 209 samples: first
Player A won 107 times and the second Player A won 102 times. We will
conduct 2-sided 1-Proportion Test (not 2-Proportions Test) since all the
data was from one Sample. We conducted a Minitab 1-Proportion Test in
Table 3, and the Null Hypothesis H0 : Player A Winning Probability= 0.5
(50%). Team used Normal Approximation method to conduct 1-Proportion
Z test.
The P-value is 0.729 > 0.05, which failed to reject the Null Hypothesis.
This result has indicated the playing sequence has not made significant
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impact on the winning probability between two Type A players.

Case II: two Type B players played each other. Among 209 samples: first
Player B won 109 times and the second Player won 100 times. We will
conduct 2-sided 1-Proportion Test (not 2-Proportions Test) since all the
data was from one Sample.
We conducted a Minitab 1-Proportion Test, and the Null Hypothesis H0 :
Player B Winning Probability= 0.5 (50 percent). Team used Normal Ap-
proximation method to conduct 1-Proportion Z test.
The P-value is 0.534 > 0.05, which failed to reject the Null Hypothesis.
This result has indicated the playing sequence has not made significant
impact on the winning probability between two Type B players.

Case III:Player A (Go First) played with Player B (Go Second). Among 209
samples: Player A only won 7 times and Play B won 202 times. Based on
our Case III prediction, we would predict Player A should win 23.3%. Team
has conducted 1-Proportion Test and the Null Hypothesis H0 : Player A
Winning Probability= 0.233 (23.3%) in Table 4. P-Value is 0.000 and we
should reject Null Hypothesis which has indicated our Case III prediction
model is not validated through our Java simulation.

Case IV: Player A (Go Second) played with Player B (Go First). Among
209 samples: Player A only won 6 times and Play B won 203 times. Based
on our Case IV prediction, we would predict Player A should win 15.7%.
Team has conducted 1-Proportion Test and the Null Hypothesis H0 : Player
A Winning Probability= 0.157 (15.7%) in Table 6. P-Value is 0.000 and we
should reject Null Hypothesis which has indicated our Case III prediction
is not validated through our Java simulation. We will address this issue
later.

Java results have supported our CASE I and CASE II non-bias result on
which player would GO First. There is no significant bias observed regard-
ing the playing sequence would impact the winning probability. However,
in Case III and Case IV, our prediction model is not very reliable to pre-
dict the Java results. The biggest reason of failing the prediction is that
we assumed each game will be completed within four rounds. If both play-
ers are very conservative, this assumption will be very questionable. In
order to further improve the prediction capability, we will expand current
four-round modeling to five-round or six-round to improve our prediction
capability.

Team has successfully built a predictive model to simulate the winning
probability on four Cases. There is no significant evidence showing the
playing sequence would impact the winning result. This result is making
sense since we are assuming all events are independent. This independency
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should be more accurate when we have more chips in the pool. Player B
(knowing four rules) has a much higher winning probability (Less than 95%
chance) over Player A (playing blindly). Our predictive model can accu-
rately predict the winning probability if we can take 5 or 6 rounds. Team
has conducted the sample size calculation in order to draw a statistical
conclusion to verify the two hypotheses. Developing a Java programming
has significantly reduced our effort to collect data to validate our predictive
model.

Acknowledgments: Special Thanks to Dr.Charles Chan and Dr. Ying
Huang for their guidance and mentorship through out this project
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Abstract: We present a longitudinal analysis of the efficacy of a parenting in-
tervention program using Generalized Linear Mixed Effect Models.
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1 Introduction

The Sinovuyo Caring Families Programme (SCFP) aimed to measure in-
tervention effects of a group-based parent skills training intervention for
primary caregivers of children aged 2 to 9, immediately post-test and at
12-month follow-up on four sets of primary endpoints and several secondary
endpoints that describe different aspects of parent and child behaviour.
Two hundred and ninety six child-carer dyads were randomised into one
of the two study arms. In the intervention arm, primary caregivers were
invited to participate in the SCFP, a 12-session group-based parent skills
training. In the control arm, primary caregivers were only invited to access
standard of care services. The SCFP was conducted in two independent
waves corresponding to different time intervals and different residential
areas. Within each wave, each participant that was allocated to the in-
tervention arm was also assigned to a group in which the intervention
was administered. The intervention was assessed through several composite
scores, derived by summing either Likert scale assessments of the intensity
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of a behaviour, or binary indicators indicate the presence of a trait. It was
assumed that these pseudo-continuous outcomes will followed conventional
parametric distributions.

2 Model Structure

There were two types of models fitted in analysing the SCFP data: (1) the
binary-intervention models and (2) the dose-response models. The former
focused on comparing the control arm to the intervention arm. The latter
focused on comparing whether the frequency of participants attendance to
the group sessions (in the intervention arm) made signicant differences. The
underlying distributions of the composite scores were modelled assuming
either Gaussian (for sums of many individual items with symmetric empir-
ical distributions), Negative Binomial (for over-dispersed count outcomes)
or Poisson(for count outcomes) distributions. A log link was used for all
models.

2.1 Binary intervention models

For child-caregiver dyad j in group i assessed at time k the model for
response Yijk is

log(E(Yijk)) = (β0 + b0,ij) + βt1δ1,ij + βt2δ2,ij + (βat1 + bat1,i)δarm,ijδ1,ij

+(βat2 + bat2,i)δarm,ijδ2,ij + βwδwave,ij + βsδsex,ij + βgδage,ij

where i = 0, 1, 2, . . . , 11 denoting the group, with all participants in the
control arm in group 0 and participants in the intervention arm falling in
one of groups 1 to 11; j = 1, 2, . . . , ni, the number of participants in group
i; k = 0, 1, 2, corresponding to times 0, 1 and 2, respectively; δk,ij = 1 if
time= k, for k = 1, 2, = 0 otherwise; δarm,ij = 0, 1 for control and inter-
vention arms,respectively; δwave,ij = 0, 1 for waves 1 and 2, respectively;
δsex,ij = 0, 1 for females and males, respectively; δage,i,j = 0, 1 for child age
interval between 2− 5 and 6− 9 years, respectively; the β parameters are
treated as fixed effects; b0,ij ∼ N(0;σ0) is a dyad-specific random effect
for the intercept; bat1,i ∼ N(0;σt1) and bat2,i ∼ N(0;σt2) are group-specific
random effects. Random effects were initially correlated.
The size of the intervention effects at times 1 and 2 are estimated by
exp(βat1) and exp(βat2), respectively, which measure the proportional dif-
ference in the change from baseline in the E(Yijk) at times 1 and 2 for the
intervention group compared to the control group.

2.2 Dose-response models

Due to the variable attendance of group session among participants in the
intervention arm, a second model was fitted to assess whether the frequency
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of attendance impacted on the efficacy of the intervention program. These
dose-response models included a stratification by the presence of inter-
partner violence at baseline in addition to the stratifications by wave, sex
and age group.

log(E(Yijk)) = (β0 + b0,ij) + βt1δ1,ij + βt2δ2,ij + (βAt1 + bAt1,i)δAtt,ijδ1,ij

+(βAt2 + bAt2,i)δAtt,ijδ2,ij + βwδwave,ij + βpδipv,ij + βsδsex,ij + βgδage,ij

+βwt1δwave,ijδ1,ij + βwt2δwave,ijδ2,ij + βpt1δipv,ijδ1,ij + βpt2δipv,ijδ2,ij

+βpAt1δipv,ijδAtt,ijδ1,ij + βpAt2δipv,ijδAtt,ijδ2,ij

+βwAt1δwave,ijδAtt,ijδ1,ij + βwAt2δwave,ijδAtt,ijδ2,ij

where δAtt,ij = 0, 1, . . . , 12 for the number of group sessions attended with
controls having a value of 0 by design; δipv,ij = 0, 1 for absence or pres-
ence,respectively, of ipv experienced by caregiver; bAt1,i ∼ N(0;σAt1) and
bAt2,i ∼ N(0;σAt2) are group-specific random effects that could be corre-
lated; all other terms as defined above for binary model.
The impact on the proportional change from baseline to times 1 and 2
of a unit increase in the number of group sessions attended is measured
by exp(βAt1) and exp(βAt2), respectively for dyads in wave 1 whose care-
givers did not experience ipv. The modifications due to wave and presence
of ipv are measured by exp(βwAt1) and exp(βwAt2) and exp(βpAt1) and
exp(βpAt2), respectively.

3 Results

The table below summarizes the interaction terms from the binary model
for three selected outcomes.

TABLE 1. Estimated parameters for binary intervention models

Effect Exp(beta) 95% CI p-value

ECBI intensity
Arm*time1vs0 0.9636 (0.9152;1.0147) 0.1592
Arm*time2vs0 0.9645 (0.9092;1.0232) 0.2296

Physical Discipline
Arm*time1vs0 0.6772 (0.5430;0.8446) 0.0005
Arm*time2vs0 0.9530 (0.7379;1.2308) 0.7121

Positive Child Behaviour
Arm*time1vs0 1.0644 (0.9717;1.1660) 0.1796
Arm*time2vs0 1.1254 (1.0410;1.2166) 0.0030

Adjusted for wave, sex and age.
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The graphs in figure 1 plot the proportional change, as measured by the
exponent of the sum of the relevant combination of estimated β coefficients,
in the three outcomes for increasing levels of the intervention. Point-wise
confidence intervals are indicated with vertical lines.

FIGURE 1. Effect of an increasing level of intervention

4 Discussion

Table 1 shows that a marginally larger, though not significant, decrease in
ECBI intensity was observed for the intervention group compared to the
control arm. For Physical Disicipline, the intervention arm showed a signifi-
cantly larger decrease in scores compared to the control group immediately
after the intervention at time 1, but 12 months later the beneficial effect of
the intervention seemed to have largely disappeared. The intervention arm
resulted in a 6% higher incidence of Positive Child Behaviour immediately
after the intervention and a 12% higher 12 months later compared to the
control arm, with only the latter increase being statistically significant.
The graphed profiles in figure 1 show a larger reduction in ECBI frequency
and for Physical Discipline, and larger increases in Observed Positive Child
Behaviour, at time 1 immediately after the intervention period relative to
baseline for increasing number of visits attended. Non-parallel lines cor-
respond to larger effect sizes for the three-way interaction terms in the
dose-response models, indicating the modification of the effects due to the
different waves or due to the presence of ipv. The profiles for the relative
changes from baseline to the 12 months follow-up visit are near to horizon-
tal and the point-wise confidence intervals overlap.
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Abstract: A hurdle model is a two-part model where a binomial model is used to
model the process for zero counts and a truncated one for positive counts. In this
paper a hyper-Poisson truncated model is proposed for modelling the positive
counts in the number of caries in 9-years-olds and it is compared with a hurdle
negative binomial regression model.
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1 Introduction

A hurdle model (Mullahy, 1986; Cameron and Trivedi, 2013) is a modified
count model in which there are two processes, one generating the zero
counts and one generating the positive counts. The two models are not
constrained to be the same. The concept underlying the hurdle model is
that a binomial probability model governs the binary outcome of whether
a count variable has a zero or a positive value. If the value is positive, the
“hurdle is crossed” and the conditional distribution of the positive values
is governed by a zero-truncated count model. Traditional models for the
positive counts are the Poisson and NB truncated distributions. In these
classical models, regressors are introduced to explain the mean of the non-
truncated distribution which in fact cannot be observed. In addition, the
interpretation of the coefficients from the zero-truncated model no longer
corresponds directly to changes in the unconditional rate. For all these
reasons it would be interesting to introduce the explanatory variables in
the truncated mean so that the regression coefficients could explain the
performance of the true observed mean (Mart́ınez-Rodŕıguez et al.).
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In this work a hyper-Poisson regression model for zero-truncated count
data based on the hyper-Poisson distribution (Sáez-Castillo et al., 2013a)
is used for modelling the positive counts. The truncated hyper-Poisson re-
gression model introduces the regressors in the equation of the mean of the
truncated distribution and additionally, regressors can also be introduced
in the equation of the dispersion parameter in order to model under- and
over- dispersion.

2 Hurdle hyper-Poisson regression model

A hurdle model has two parts: one zero part which models the zeroes and
one truncated count part that models the positive counts. Formally,

P (Y = y) =

{
f1(0) y = 0
(1− f1(0)) f2(y) y > 0

where f1(0) = P (Y = 0) and f2(y) is the p.m.f. of the corresponding
zero-truncated distribution. In this work we consider the truncated hyper-
Poisson distribution. Specifically,

f2(y) =
1

1F1 (1; γ;λ)− 1

λy

(γ)y
, y = 1, 2, ...,

where γ, λ > 0, (a)r = a (a+ 1) ... (a+ r − 1) is the Pochhammer symbol
and

1F1 (a; b; c) =
∞∑

k=0

(a)k
(b)k

ck

k!

is the confluent function. γ is a dispersion parameter which determines
that the hyper-Poisson distribution is over-dispersed if it is greater than
one, under-dispersed if it is lower than one and matches with the Poisson
if it is equal to one; λ is interpreted as a location parameter.
An expression of the mean of the truncated hyper-Poisson (Sáez-Castillo
et al., 2013b) is

µ = λ+ f2(1)− (γ − 1) (1− f2(1)) , (1)

where

f2(1) =
1

1F1 (1; γ;λ)− 1

λ

γ
.

Let be yi the value of the response variable of the i− th individual of the
sample and xTi = (1, xi1, xi2, . . . , xik) the observed covariates in this i− th
individual. Let us consider,

µi =ex
T
i β
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In this work the parameter λ will be determined by (1) from the values
of µi and γ. The estimation of the regression coefficients β is carried out
maximizing the log-likelihood function that is given by

logL (γ, λ) = −
n∑

i=1

log Γ (γ + yi) + log(λ)nȳ

+ n (log Γ (γ)− log (1F1 (1; γ;λ)− 1)) .

3 Application

We shall illustrate the hurdle hype-Poisson (HhP ) regression model and
compare it with a hurdle negative binomial (HNB) regression model.
Specifically, we use data from Hofstetter et al. (2016). The dataset contains
observations of 396 nine-year-old children in the Netherlands. The depen-
dent variable is the number of caries in the primary teeth. The explanatory
variables (their levels in brackets) are: education level of the mother (high
education, low education), gender (male, female), ethnicity (natives, immi-
grants), frequency of brushing teeth (less than twice a day, at least twice
a day), frequency of having breakfast (not daily, daily), frequency of food
and drinks per day in addition to the three main meals (maximum 7 times
daily, more than 7 times daily) and the score on Corah’s Dental Anxiety
Questionnaire (lower than 13, higher than or equal to 13).
Table 1 shows the coefficient estimates and standard errors of HNB and
HhP regression models together with the obtained AIC.
The comparison of AIC included in Table 1 shows that HhP regression
model fits slightly better than the HNB regression model, but what is
more interesting is that the parameter estimates in the HhP model are
more accurate as their s.e. are lower. Also, it has to be emphasized that as
in the HhP model the explanatory variables are included in the truncated
mean the regression coefficients could explain the performance of the true
observed mean and not the one of the non-truncated distribution.
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Mart́ınez-Rodŕıguez, A.M., Conde-Sánchez, A. and Olmo-Jiménez, M.J. A
new approach to truncated regression for count data: application to
a hurdle model. Manuscript submitted for publication.
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TABLE 1. Coefficient estimates and standard errors of HNB and HhP fitted
model.

Count model coefficients

Truncated NB Truncated hP
Estimate Std. Error Estimate Std. Error

(Intercept) 1.293 0.131 *** 1.424 0.102 ***
educationlow 0.304 0.130 * 0.231 0.107 *
gendermale 0.050 0.125 0.075 0.103
ethnicityimmigrant 0.336 0.158 * 0.275 0.122 *
brushing(< 2) 0.378 0.143 ** 0.292 0.115 **
breakfast(< 7) 0.138 0.185 0.148 0.151
fooddrink(> 7) -0.083 0.197 -0.092 0.161
corah(≥ 13) 0.385 0.221 . 0.302 0.176 .
Log(θ)/Log(γ) 0.512 0.187 ** 4.401 0.447 ***

AIC 1710.477 1704.009

Zero hurdle model coefficients
Estimate Std. Error

(Intercept) -0.327 0.198 .
educationlow 0.404 0.214 .
gendermale -0.044 0.213
ethnicityimmigrant 0.488 0.291 .
brushing(< 2) 0.262 0.268
breakfast(< 7) 1.257 0.476 **
fooddrink(> 7) 0.984 0.457 *
corah(≥ 13) 16.147 865.497

. p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001
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Abstract: In epidemiological studies it is common practice to work with bi-
nary variables that reflect the presence of certain diseases, which in turn may be
associated with another set of variables, that in general are assumed as risk fac-
tors of the former. In the field of epidemiological studies referred to oral health,
it is common to inquire about the relationship between the presence of some
pathologies and certain characteristics of the study participants through gene-
ralized linear models (GLM). However, this type of analysis is usually carried
out for each variable of interest separately and at no time is a measure obtained
that summarizes the status of each participant. In this study we propose the use
of item response theory (IRT) models (specifically the Rasch model) since they
allow the joint analysis of a set of variables obtaining an individual assessment
as a by-product, which in this case is interpreted as “sickness proneness”. On
the other hand , the analysis presented here extends the Rasch model including
a linear predictor that allows to investigate about the possible effect of several
factors on the propoensity of the individuals to suffer the different pathologies.
Our results found evidence of an effect of gender, physical activity and age on
general proneness to oral diseases.

Keywords: Rasch model; Epidemiological studies; Non Communicable diseases;
Oral health.

1 Introduction

The epidemiological study of the most common oral pathologies, decay
(D), loss of attachment (LoA), periodontal pockets (PP) and functional

This paper was published as a part of the proceedings of the 33rd Inter-
national Workshop on Statistical Modelling (IWSM), University of Bristol, UK,
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dentition (FD), can be carried out through different indicators, the most ac-
cepted of them is through binary variables representing the presence/absence
of each pathology. In the field of health population surveys, it is a com-
mon practice for the epidemiological analysis investigate the factors that
propitiate the occurrence of such pathologies using GLMs. In this way it is
possible to determine what are the conditions for a certain disease, however,
these simple models are not able to carry out this analysis simultaneously
in several pathologies. For this reason, we propose to use IRT models in
the epidemiological field because:

• they are capable of jointly analyze a set of outcomes and

• provide an assessment of each individual.

However, the most frequently used IRT models provide indicators that
describe the behavior of each variable without considering the possible
effect of other set of explanatory variables. To overcome this difficulty we
propose to model the outcomes through a Rasch model where the behavior
of subject parameters is determined by a normal distribution whose mean
is modeled by a linear predictor (see Figure 1).

FIGURE 1. Flow diagram of the proposed model.

The data used comes from a study of people demanding attention in Den-
tistry Faculty, of the Universidad de la República, Montevideo, Uruguay,
during the period 2015-2016. There were 602 participants where the pres-
ence/absence of four oral diseases was studied taking into account gender,
age and physical activity of each participant.

2 Statistical Analysis

As mentioned in the previous section, given the binary nature of the vari-
ables used for each oral disease, the Rasch model appears as a natural
starting point for the analysis. We extended the model considering a set of
predictors in the mean of the random effect used to model the behavior of
each individual as is shown in equation 1.
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P(Yij = 1|θi, δj) = eθi−δj

1+eθi−δj
j = 1, 2, 3, 4

θi ∼ N(XT
i β, 1) i = 1, . . . , n = 602

(1)

Where Yij represents the occurrence of the disease j on participant i, θi
is the subject parameter (which in this context can be interpreted as the
sickness proneness of each participant), δj is the difficulty parameter of
each variable (that here is related to the prevalence of each pathology),
XT
i β is a linear predictor that accounts for the effect of gender, age and

physical activity. Equation 2 expresses the likelihood function.

L(Y |X,β, δ) =
n∏

i=1

∫

R

j=3∏

j=1

P(θ, δj)
Yij (1− P(θ, δj))

(1−Yij) 1√
2π
e−

(θ−Xiβ)2
2 dθ

(2)
The optimization of the likelihood function is carried out numerically and,
through it’s Hessian matrix, an approximation of the variance of each es-
timator is obtained. All calculations are carried out through the software
R.

3 Results

In Table 1 can be observed taking into account the negative values of the
difficulty parameters, the four pathologies have relatively high prevalence
in the studied population. Figure 2 presents the expected value of “sick-
ness proneness” as a non-linear function of age with different intercept for
gender and physical activity status. It can be seen that men present higher
proneness to oral diseases than women and, regarding insufficient physical
activity, it decreases the mean value of “sickness proneness”.
Regarding the effect of age, the restricted cubic spline shows a signifi-
cant increase effect (with negative concavity). Finally, a significant effect
of physical activity, as well as gender, was found in the propensity to oral
diseases.

4 Conclusion

Through the proposed model, it was possible to determine the prevalence
level of the studied pathologies as well as the effect of some covariates of
interest. It was observed that physical activity status had a significant effect
on “sickness proneness”.There was also detected a significant difference
between men and women, while a non-linear (and increasing) effect of age
was observed on the tendency to suffer from oral diseases.
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FIGURE 2. Sickness proneness according to age, gender and physical activity.

TABLE 1. Estimates of the Rasch model with covariates

Prevalence parameters

Pathologies Estimate S.E. Z core p-value

PP -0.989 0.093 -10.65 <0.001
D -1.802 0.106 -17.06 <0.001
FD -0.021 0.075 -0.286 0.775
LoA -1.256 0.097 -13.00 <0.001

Linear predictor estimates

gender (F) -0.250 0.113 -2.211 0.027
spline age C0 1.225 0.129 9.506 <0.001
spline age C1 -0.646 0.121 -3.354 <0.001
physical activity (ins) 0.245 0.116 2.108 0.035
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Abstract: Multi-state models are a useful way of describing a process in which
an individual moves through a number of finite states in continuous time. The
illness-death model plays a central role in the theory and practice of these models,
describing the dynamics of healthy subjects who may move to an intermediate
‘diseased’ state before entering into a terminal absorbing state. In these mod-
els one important goal is the modeling of transition rates which is usually done
by studying the relationship between covariates and disease evolution. However,
biomedical researchers are also interested in reporting other interpretable results
in a simple and summarized manner. These include estimates of predictive proba-
bilities, such as the transition probabilities, occupation probabilities, cumulative
incidence functions, prevalence and the sojourn time distributions. An R package
was built providing answers to all these topics.

Keywords: Illness-death model; Kaplan-Meier; Landmark approach; Nonpara-
metric estimation; Survival analysis.

1 Introduction

Multi-state models are very useful for describing complex event history
data. These models may be considered a generalization of survival analysis
where survival is the ultimate outcome of interest but where information
is available about intermediate events which individuals may experience
during the study period. For instances, in most biomedical applications,
besides the ‘healthy’ initial state and the absorbing ‘dead’ state, one may
observe intermediate (transient) states based on health conditions, disease
stages, clinical symptoms, etc. The illness-death model is probably the most
popular one in the medical literature. The irreversible version of this model

This paper was published as a part of the proceedings of the 33rd Inter-
national Workshop on Statistical Modelling (IWSM), University of Bristol, UK,
16-20 July 2018. The copyright remains with the author(s). Permission to repro-
duce or extract any parts of this abstract should be requested from the author(s).
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(Figure 1), describes the pathway from an initial state to an absorbing state
either directly or through an intermediate state. Many time-to-event data
sets from biomedical studies with multiple events can be reduced to this
generic structure. Recent reviews on this topic may be found in the papers
by Putter et al. (2007), Meira-Machado et al. (2009), Meira-Machado et al.
(2011) and Meira-Machado and Sestelo (2018).

0. Disease-free  1. Diseased

2. Dead

FIGURE 1. Illness-death model.

One important goal in multi-state modelling is to relate the individual char-
acteristics with the intensity rates through a covariate vector but biomed-
ical researchers are also interested in reporting interpretable results in
a simple and summarized manner. These include estimates of predictive
probabilities, such as the transition probabilities, occupation probabilities,
cumulative incidence functions, prevalence and the sojourn time distribu-
tions. The development of survidm R package has been motivated by
several recent contributions that account for these problems; in particular
the newly developed methods based on landmarking. The current version of
the package provides seven different approaches to estimate the transition
probabilities, three methods for the sojourn distributions and one approach
for the cumulative incidence functions. In addition, these probabilities can
also be estimated conditionally on covariate measures. The package also al-
lows the user to perform multi-state regression where the estimation of the
covariate effects is achieved using Cox regression in which different effects
of the covariates are assumed for different transitions.

2 survidm in practice

This software enables both numerical and graphical outputs to be displayed
for several methods. This software is intended to be used with the R sta-
tistical program. Our package is composed of 13 functions that allow users
to obtain estimates for all proposed methods. Details on the usage of the
functions (described in Table 1) can be obtained with the corresponding
help pages.
It should be noted that to implement the methods described in the method-
ology section one needs the following variables of data: time1, event1,
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Function Description

survIDM Create a survIDM object.
coxidm Fits proportional hazards regression models for each

transition.
tprob Nonparametric estimation of the transition probabili-

ties.
CIF Nonparametric estimation of the cumulative incidence

functions.
sojourn Nonparametric estimation of the sojourn distributions.
plot.survIDM Plot for an object of class survIDM.
print.survIDM Print for an object of class survIDM.
summary.survIDM Summary for an object of class survIDM.
KM Computes the Kaplan-Meier product-limit of survival.
PKM Computes the presmoothed Kaplan-Meier product-

limit of survival.
Beran Computes the conditional survival probability of the re-

sponse, given the covariate under random censoring.
KMW Returns a vector with the Kaplan-Meier weights.
PKMW Returns a vector with the presmoothed Kaplan-Meier

weights.
LLW Returns a vector with the local linear weights.
NWW Returns a vector with the Nadaraya-Watson weights.

TABLE 1. Summary of functions in the survidm package.

Stime and event. A single covariate can also be included (it is only neces-
sary for IPCW methods). The variable time1 represents the observed time to
the first event of interest, and event1 the corresponding status/censoring
indicator (if the survival time is a censored observation, the value is 0 and
otherwise the value is 1). The variable Stime represents the total survival
time. If event1 = 0, then the total survival time is equal to the observed
time to the first event. The variable event is the final status of the indi-
vidual (takes the value 1 if the final event of interest is observed and 0
otherwise).
For illustration purposes we will use data of 929 patients affected by colon
cancer that underwent a curative surgery for colorectal cancer. In this
study, 468 developed recurrence and among these 414 died. 38 patients
died without recurrence. The rest of the patients (423) remained alive and
disease-free up to the end of the follow-up. Besides the two event times
(time to recurrence and time to death) and the corresponding indicator
statuses a vector of covariates including age, sex and number of lymph
nodes (nodes) are also available.
One important goal in multi-state modeling is to study the relationships
between the different predictors and the outcome. To relate the individual
characteristics to the intensity rates several models have been used in lit-
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erature. A common simplifying strategy is to decouple the whole process
into various survival models, by fitting separate intensities to all permit-
ted transitions using semi-parametric Cox proportional hazard regression
models, while making appropriate adjustments to the risk set. This can be
obtained using the following input commands:

library(survidm)

data(colonIDM)

fit.cmm <- coxidm(survIDM(time1, event1, Stime, event) ~ age

+ sex + nodes, data = colonIDM)

summary(fit.cmm)

Results obtained from the above input commands (not shown) reveal that
multi-state regression models provide detailed information of the disease
process, revealing how the different covariates may affect the various per-
mitted transitions. For instances, it revealed age as an important predictor
on the mortality transitions (with and without recurrence) but not on the
recurrence incidence, whereas sex only revealed a significant effect on the
mortality transition after recurrence.
The patients course over time may also be studied through other quantities
such as the transition probabilities. To obtain these estimates (for a model
with no covariates), the following input command must be typed:

res <- tprob(survIDM(time1, event1, Stime, event) ~ 1, s=365,

method = "LM", conf=TRUE, data = colonIDM)

summary(res, time=365*1:6)

plot(res)

Figure 2 reports estimated transition probabilities (Pij(s, t)) for a fixed
value of s = 365 (days), along time. Results were obtained using the Land-
mark method (method = "LM") proposed by de Uña-Álvarez and Meira-
Machado (2015). It is worth mention that function tprob implements eight
distinct methods including the possibility of estimating these quantities
conditional on covariates.
Estimates and plots for the cumulative incidence (of recurrence) (Geskus
2011) and for the sojourn time distribution quantities can also be obtained.
The following input commands provide the corresponding numerical and
graphical output for the two quantities:

res.cif <- CIF(survIDM(time1, event1, Stime, event) ~ 1,

data = colonIDM, conf = TRUE)

summary(res.cif, time = 365*1:7)

plot(res.cif, ylim=c(0, 0.6))

res.soj <- sojourn(survIDM(time1, event1, Stime, event) ~ 1,

data = colonIDM, conf = TRUE, conf.level = 0.95)

summary(res.soj, time = 365*1:6)

plot(res.soj)



Meira-Machado and Sestelo 105

500 1000 1500 2000 2500 3000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time (years)

p i
j(3

65
,t)

00
01
02
11
12

FIGURE 2. Estimates of the transition probabilities using the landmark method.
Colon cancer data.
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1 Introduction

Evaluating engagement with any intervention program is important for
understanding its efficacy (Scherer et al., 2017). In such programs missing
assessment data is often closely linked to level of engagement, resulting
in the potential for informative missingness. But not always. As explained
by Scherer et al. (2017), participants who stop providing assessment data
do not always drop out of a program, so it is wrong to assume complete
disengagement. Models that can accommodate informative missingness are
required for unbiased inference when analysing the effectiveness of eHealth
interventions. Various methods have been developed to address this prob-
lem in the evaluation of such interventions. In particular evaluation models
are commonly fitted, controlling for the estimated probability of a miss-
ing response, which is usually obtained from a logistic or logit regression
analysis using baseline data. However, this method only avoids bias when
the model for non-response addresses the mechanism causing non-response
(Bell et al., 2013). But what about when sample sizes are very large and
attrition rates are very high as is the case for many eHealth interventions?

2 Objective

The objective in this paper is to investigate more powerful approaches for
estimating the probability of missingness with big eHealth data and then,
using these probabilities, to evaluate the effect of missingness on a primary
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outcome measure, without and then with the inclusion of more direct mea-
sures of engagement, namely participant engagement with specific program
modules and features.

3 Methods

3.1 Data

The data utilized in this study was kindly provided by a global Software as
a Service (SaaS) vendor, Virgin Pulse, for their Global Challenge (VPGC)
program run from May to September 2016. This is a workplace health and
exercise program which consists of a 100-day virtual journey. Employees are
placed in teams of seven, provided with an activity tracker and given access
to an application through a web browser or mobile device. Teams compete
with one another to accumulate steps, measured by the activity trackers
and entered online or sync’ed on a daily basis. The program is gamified
to encourage healthy habits through education, goal setting and positive
reinforcement using special program features such as personal statistics,
competitions and virtual trophies. In addition to the Physical Activity
module the program includes modules addressing Sleep, Nutrition and a
module called Balance which addresses psychological wellbeing.

3.2 Assessment data

Three sources of assessment data were used in this analysis. Self-reported
health, psychological wellbeing and performance data were collected from
participants at the start and end of the 100 Day Journey. Finally, experience
data were collected from the participants approximately two weeks after
the 100 Day Journey ended. These data recorded the levels of engagement
with the various program modules and features.

3.3 Participants

Starting with an initial enrolment of 178350, the response rate was 84.6
percent for the first assessment, 48.4 percent for the second assessment and
10.5 percent for the final satisfaction assessment. For the purposes of this
analysis we will focus on the people who completed the third assessment,
endeavouring to estimate the probability of this event on the basis of the
information collected for the first and second assessments.

3.4 Measures

The measures of interest for the first two assessments consisted of a well
validated five item measure for psychological wellbeing (WHO5) as well as
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perceptions on 0-6 ordinal scales for Felt Happy, Awareness Physical Ac-
tivity, Sleep Quality, Stress at Work, Awareness Nutrition, Overall Health
and Productivity at Work. The WHO5 will be regarded as the primary
outcome measure for this study.

3.5 Estimation of probabilities for completion of the particpant
experience survey

The participants were randomly split into training, validation and test data
sets in a 40:30:30 ratio. In order to allow for the lack of balance in the data
a one dollar profit was assumed for each correctly identified missing survey
and a ten dollar profit for each correctly identified completed survey. The
classification accuracy of the various tools were compared using the ROC
and Gini Indices. The random forest was of particular interest because this
method was able to accommodate cases with varying degrees of missingness
without losing any of the data. The forest was designed to have 100 trees,
each constructed using a random sample consisting of 60 percent of the
data, with Chi-Squared tests used to choose the optimum splitting variable
for each split. These tests were used in order to avoid overfitting which is
a commonly reported problem with random forests.

3.6 Models for psychological wellbeing

In order to accommodate the varying degrees of missingness in the collected
data, mixed model analyses were conducted, controling for age and gender.
The first model was used to assess to what extent missingness related to
improvements in psychological wellbeing. A second model was then fitted,
testing directly for engagement effects on psychological wellbeing, utilising
participant engagement reports with each of the program modules and gam-
ification features. However, the importance of missingness was evaluated at
the same time, in order to determine whether any additional information
could be provided by this estimated survey completion probability.

4 Results

With test data the random forest produced an area under the ROC curve of
0.776 compared to values of 0.731 for Gradient Boosting, 0.596 for a neural
network with three hidden nodes and 0.586 for a binary logistic regression.
The estimated survey completion probabilities obtained from the random
forest ranged from 0.55 to 1.0 with a similar distribution for participants
who did and did not complete the survey. However, 54.5 percent of the
participants who completed the participant experience survey received an
estimated probability of above 95 percent with only 21.6 percent of those
who did not complete this survey receiving an estimate probability of above
95 percent as shown in Figure 1.
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FIGURE 1. Distribution Estimated Probability of Completion for Final Survey

The most important variables for predicting the probability of survey com-
pletion were height and weight (due to low survey completion rates for
people who failed to supply this information), and the WHO5 collected
in the second assessment. The mixed model analysis showed that improve-
ments in psychological wellbeing were significantly associated with the esti-
mated probability of survey completion. However, when module and feature
engagement were added to the model the effect of the probability of sur-
vey completion weakened, becoming non-significant (z=.369, p=.712). As
shown in Figure 2, two of the modules, the Nutrition and the Balance mod-
ules had a very significant relationship with improvements in psychological
wellbeing. As shown in Figure 3 the significance of the Mini-Challenges,
Competitions, Community Chatroom and personal statistics features were
confirmed, with only the personal statistics association shown to be nega-
tive.

5 Conclusions

The random forest performed better than more typically used methods
for predicting the likelihood of a completed participant experience survey
because, unlike these methods, it could utilise records with missing data.
This is an important distinction when working with eHealth data because
missing data is so common, suggesting that random forests have a special
role to play with data such as this. The distribution of the estimated prob-
abilities showed support for the Scherer et al. (2017) claim that there are
participants in eHealth programs for whom failure to complete assessment
is unrelated to disengagement.
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FIGURE 2. Effect of Modules on the Relationship Between Psychological Well-
being and Estimated Probability for the Final Survey

FIGURE 3. Effect of Modules on the Relationship Between Psychological Well-
being and Estimated Probability for the Final Survey
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Mixed model analysis showed that psychological wellbeing improvements
were lower in the case of participants with low pedicted survey completion
rates, however, this effect became non-significant when direct engagement
with program modules and features were taken into consideration. This
suggests that, alhough missingness was related to the level of engagement
with this online program, it was not a source of bias in models for the
outcome measure when direct measures of engagement were also included.
Clearly direct measures for the level of engagement are critical for the
evaluation of online interventions, with these measures ideally pinpointing
modifiable aspects of these interventions.
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Abstract: Prostate cancer is the most common malignancy among men in de-
veloped countries. The single biomarker test for prostate-specific antigen (PSA)
has decreased the number of deaths from prostate cancer. However, it is contro-
versial due to low specificity and inability to identify aggressive forms of cancer
which has lead to overdiagnosis and treatment. The main dilemma faced by the
patient and clinician once prostate cancer has been detected is how best to treat
it. Here we are using optimised logistic regression and multiple new biomarker-
based diagnostics to enable accurate staging and grading of prostate cancer and
guidance for appropriate choices of treatment selection.

Keywords: Prediction models; Logistic regression; Prostate cancer.

1 Introduction

Current practice in prostate cancer detection and staging leads to inac-
curate assessments often resulting in many unnecessary treatments that
impact negatively on patients quality of life.
The single biomarker test for prostate-specific antigen (PSA), recommended
by the American Cancer Society for early screening has decreased the num-
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ber of deaths from prostate cancer but is controversial due to low specificity
and inability to identify aggressive forms of cancer.
1/3 of men who undergo surgery are found to have a non-organ confined
disease (extension of a tumour beyond the capsule of the gland) and will
have to undergo additional radiation and hormone ablation therapy. These
patients will also have to live with the quality of life issues associated
with their primary treatment as well the side effects of other treatment
approaches. Better and more accurate diagnosis of the stage and grade of
disease will impact very significantly on the patients outcome and quality
of life.
The main goal of this study is to test whether the detection of a panel of
serum protein biomarkers can be used to accurately detect and establish
the stage and grade of prostate cancers.

2 Statistical modelling

A panel of nine serum protein biomarkers were assessed by the MSD plat-
form based from previous discovery studies (Oon et al.). In a cohort of 150
Irish patients undergoing a radical prostatectomy for localized prostate
cancer as part of the Prostate Cancer Research Consortium bioresource.
Discrimination between pathological stages and grades were investigated
using logistic regression models.
Model evaluation was carried out by examining calibration, discrimination
and decision curve analysis. The calibration of the models was measured
using calibration curves. The discriminate ability of the models were com-
pared by the area under the curve (AUC) values.

3 Predicting the stage in prostate cancer

Predictive tools based on standard clinicopathologic variables have been
developed for prostate cancer including look-up tables and nomograms.
One such highly regarded tool is the Partin tables which was developed
using multivariate logistic regression. The partin tables developed to pre-
operatively predict pathological stage of prostate cancer and thus inform
the likelihood of progressive disease to help identify men who will benefit
from surgery.
While the Partin tables are well validated and used by clinicians, studies in
Ireland were not able to validate the findings with the discriminate ability
of less than 70% for the organ-confined and non-organ confined disease
(Boyce et al).
The Partin table uses clinical variables based on the digital rectal exam
(DRE), Gleason score (GS) of prostate needle biopsy and PSA.
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3.1 Results

By using the stepwise logistic regression model, the biomarkers with the
significant effects are PSA, GS, CD14, IGFBP3, GcGlobulin, ZAG, IGF1.
Figure 1 shows the discriminate ability measured using ROC curves and
AUC values for the prediction based on the Partin table and also new
significant biomarkers. Furthermore, Figure 2 shows the decision curve for
these two predictive models. Both graphs show that the predictive model
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FIGURE 1. ROC curves based on the Partin table and new biomarkers for pre-
dicting stage of the prostate cancer.

proposed where new biomarkers included has the highest AUC and net
benefit, which means it is a superior approach in predicting the stage of
the prostate cancer.
We tried to validate our model using Australian dataset including 177 pa-
tients. Figure 3 shows the ROC curve for the Australian dataset compar-
ing our final model based on significant biomarkers to the Partin table.
Although the model including significant biomarkers has the highest AUC
in the Irish dataset, it can not be validated using the Australian data.

4 Predicting the grade in prostate cancer

Our secondary goal is to predict the pathological grade using biopsy Glea-
son grade and serum biomarkers to determine if the cancer is indolent or
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FIGURE 2. Decision curves based on the Partin table and logistic regression
model based on new biomarkers for predicting the stage of the prostate cancer.
Here ”None” means assuming no one has Non-organ confined prostate cancer and
”all” means assuming everyone has Non-organ confined prostate cancer.

FIGURE 3. ROC curve based on the Partin table and logistic regression model
based on new biomarkers for predicting the stage in the Australian dataset.
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aggressive. Only a partial representation of the entire prostate can be sam-
pled in a biopsy, and there is a chance of missing small but significant
areas leading to a sampling error. As patients who have Gleason grade
below 6 may benefit from active surveillance and monitoring of their dis-
ease determining the correct grade has important implications to treatment
decisions.

4.1 Results

We built a model based on the Irish cohort and applied it to the Australian
dataset. By using the stepwise logistic regression model, the clinical vari-
ables and new biomarkers with the significant effects are PSA, GS, VEGFD,
IGFBP3, IGF1. The predictive model proposed here using three biomark-

FIGURE 4. ROC curve based on the biopsy gleason score and logistic regression
model based on new biomarkers for predicting the grade in the Irish dataset.

ers combined with the clinical variables has the highest AUC which means
it is a superior approach in predicting the grade of the prostate cancer.
Based on Figure 5 this model was also validated in the Australian dataset.

5 Conclusion

Multiple biomarkers when combined with clinical variables resulted in a
model that predicted stage and grading of prostate cancer and guidance
for appropriate choice of therapy. A logistic regression model is fitted to the
Irish dataset and then applied to the Australian dataset. Only the model
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FIGURE 5. ROC curve for the biopsy gleason score and logistic regression model
based on Irish dataset for predicting the grade in the Australian dataset.

for predicting grade was validated in the Australian model and current re-
search is ongoing to further validate it in an independent Irish and Austrian
cohort.
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Abstract: Several neuroimaging markers have been established for the early di-
agnosis of Alzheimer’s disease, among them amyloid-β deposition, glucose metabolism,
and grey matter volume. Up to now, these imaging modalities were mostly an-
alyzed separately from each other, and little is known about the regional inter-
relation and dependency of these markers. Gaussian graphical models (GGMs)
provide a probabilistic framework that estimates the conditional dependency be-
tween individual random variables. We applied GGMs for studying the inter-
regional associations and dependency between multimodal imaging markers in
prodromal Alzheimers disease. GGMs were estimated using a Bayesian framework
and for each individual diagnosis, graph-theoretical statistics were calculated to
determine structural changes associated with disease progression. Several clus-
ters were obtained for highly inter-correlated regions, e.g. adjacent regions in the
same lobes, but included only regions within the same imaging modality. Hardly
any associations were found between different modalities, indicating almost no
conditional dependency of brain regions across modalities when considering the
covariance explained all other regions. Network measures clustering coefficient
and path length were significantly altered across diagnostic groups.

Keywords: Brain connectivity; Bayesian inference; Graphical models.

1 Introduction

Alzheimer’s disease is characterized by a range of pathological brain alter-
ations that can be assessed in vivo using various neuroimaging methods,
including MRI and PET. With the advent of multimodal imaging being
applied in large samples on a regular basis, the need for adequate analysis
methods has been arisen.
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We propose the application of Gaussian graphical models (GGM), which
are able to reliably estimate the partial correlation between various multi-
collinear predictors. This makes them an interesting candidate for studying
statistical associations between various brain regions. The partial correla-
tion derived from GGMs is conceptually similar to the partial correlation
obtained from a series of linear regression models providing the statistical
association of the dependent and independent variables controlling for the
confounding variables. In GGMs, this concept is being extended such that
the association between each pair of variables is estimated controlled for
all other variables included in the model. Technically, GGMs are naively
realized by matrix inversion of the covariance matrix or, in more robust and
efficient approaches, apply efficient sampling schemes Mohammadi and Wit
(2015, 2017).
In this paper we assessed the statistical associations within and between
three main imaging markers of Alzheimer’s disease using GGMs based
on a whole-cortex parcellation of the brain estimating the regional inter-
dependency of amyloid-β deposition (florbetapir/AV45-PET), glucose meta-
bolism (FDG-PET), and gray matter volume (T1-weighted MRI). Based
our previous results with only six representative brain regions Dyrba et
al. (2017), we hypothesized that regional amyloid deposition has low con-
tribution to neurodegeneration, whereas hypometabolism was expected to
be stronger related to neurodegeneration. Further, we expected a high lo-
cal association within each region following a local evolution of the disease
and, additionally, few hub-nodes to influence pathology in other regions
as well. For graph-theoretical measures, we expected a linear trajectory of
decreasing clustering coefficient and increasing path length with stronger
disease severity.

2 Material and Methods

Graphical models provide an effective way for describing statistical pat-
terns in multivariate data and for estimating the conditional dependency
between the various brain regions and imaging modalities based on GGMs
Mohammadi (2015). For data following a multivariate normal distribution,
undirected GGMs are commonly used. In these graphical models, the graph
structure is directly characterized by the precision matrix, i.e. the inverse
of the covariance matrix: non-zero entries in the precision matrix show the
edges in the conditional dependency graph. Notably, simple inversion of
the covariance matrix usually does not work in real world data sets, as al-
ready slight noise or selection bias in the empirical data causes the precision
matrix to contain almost no zero entries. To overcome this problem, regu-
larization techniques or efficient sampling algorithms have been proposed
that additionally employ a sparsity assumption to reduce the effect of noise
and to only detect the most probable conditional dependencies. For our
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analyses, we employed a computationally efficient Bayesian framework im-
plemented in the R package BDgraph, more specifically a continuous-time
birth-death Markov process, for estimating the most probable graph struc-
ture and edge weights that correspond partial correlations Mohammadi and
Wit (2015, 2017). For this study, BDgraph was substantially extended by
multithreaded parallel processing and marginal pseudo-likelihood approxi-
mation to speed up computations.

3 Results

The conditional dependency matrix obtained using the GGM approach by
Mohammadi and Wit (2015), using the BDgraph package (Mohmmadi and
Wit, 2017) . For amyloid-β deposition and glucose metabolism, brain re-
gions directly adjacent to each other formed smaller clusters of high partial
correlation around the main diagonal. For gray matter volume, such pat-
terns also appeared but with lower density and inter-cluster partial correla-
tion. When considering the associations between different imaging modal-
ities, we obtained a consistent pattern of significant positive intra-regional
conditional dependency for the pairs amyloid-β deposition and metabolism
with a mean partial correlation of ρ = 0.27, and between metabolism and
gray matter volume (mean ρ = 0.23). For the pair amyloid-β deposition
and gray matter volume these associations were substantially lower, that
means that only 13 of 54 possible edges were detected with a mean of
ρ = 0.08.
When estimating separate models for each diagnostic group separately, the
graph structures were similar to each other with a mean Jaccard similarity
of j = 0.31. However, the estimated regional dependency differed between
groups due to the different degrees of severity of amyloid pathology, glucose
metabolism, and atrophy. Regarding the partial correlation weights, we ob-
tained an average cosine similarity of cos = 0.92 and Pearson coefficient of
r = 0.74. The graphs differed in their density, leading to significant alter-
ations of the clustering coefficient, characteristic path length, and small-
world coefficient (Fig 1). In concordance with recent studies assessing other
imaging modalities (cortical thinning, mean diffusivity, resting-state fMRI
connectivity), we also observed a biphasic trajectory of the graph measures.
This means that the clustering coefficient and small world coefficient ini-
tially increases when comparing early MCI and CN participants (Fig 1).
When Alzheimer’s disease progresses, i.e. in the late MCI and dementia
groups, both measures decrease again, with late MCI being approximately
on the same level as CN participants (Fig 1). The characteristic path length
showed a similar pattern across groups, but with inverted directionality and
decreasing intensity, i.e. group differences were highest in amyloid-β depo-
sition, intermediate for glucose metabolism, and lowest for gray matter
volume (Fig 1).
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FIGURE 1. Comparison of graph statistics for the partial correlation
matrices stratified by diagnostic group and image modality. The distri-
bution of the weighted clustering coefficient, characteristic weighted path length,
and small-world coefficient for individual brain regions is shown.
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1 Introduction

Currently, it is very common to have large data sets and consider the goal
of extracting relevant information without previously determining target
variables. That is, the objective is to discover the hidden relationships that
generate the data and detect clusters of cases and/or variables that are
masked by the dimensions of the data set. In this cases, dimensionality
reduction techniques (especially, Principal Components PCA) and CAV
are applied.
Abraham and Inouye (2014) argue that PCA is a widely used technique to
detect population structures and potential outliers. However, in large data
sets, the dimension causes difficulty or the impossibility of applying PCA
due to computational and time consuming problems.
Vigneau and Qannari (2003) proposed grouping the variables into homo-
geneous groups and associating each cluster with a latent variable so that:
first, the clusters must be homogeneous groups according to some criterion
of homogeneity based on the correlation between variables; and second,
the variables of each cluster must be closely related to the associated la-
tent variable. The authors propose the first principal component of each
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group as latent variable. This strategy was implemented in statistical soft-
ware environment R by Saracco et al.(2010) and Chavent et al.(2012), with
a procedure that mixes quantitative and qualitative attributes, applying
PCMIX (Kiers, 1991).
ACP bases the dimensionality reduction in the creation of synthetic vari-
ables that maximize the explained variability, but does not consider the
correlation structure. This can lead to some loss of information. To avoid
this problem we propose the application of CCA, trying to conjugate the
variability explained and the correlation structure.

2 Synthetic variables definition

We propose the application of CCA in the selection of synthetic variables
that are representative of the clusters. This proposal aims to conjugate the
amount of variability explained and the correlation structure of the data.
Specifically, after determining the clusters of variables (Gk : k = 1, . . . ,K),
the basic idea to define the representative variable of the group Gk is

• Consider the groups Gk(1) y Gk(2) that, with their union in the ag-
glomerative procedure of CAV, have formed the group Gk. Determine
the canonical variables associated with the first and second canonical
correlations between both groups of variables: W1,k(1) and W2,k(1) of
Gk(1) and W1,k(2) and W2,k(2) of Gk(2).

• Consider as representative variables of Gk the canonical variables
W1,k(1) and W2,k(2).

This procedure focuses on the correlation structure (not just variability).
So, two synthetic variables are selected from each final cluster, defined as
linear combinations of the original variables. It is necessary to specify this
selection of variables if one of the groups has a unique original variable.

• Case 1: The two subgroups have a unique original variable. Assume
without loss of generality that Gk(1) = {X1} and Gk(2) = {X2}.
Consider as representative variables of Gk = Gk(1)∪Gk(2) the original
variables: W1,k(1) = X1 and W2,k(2) = X2

• Case 2: One of the subgroups has a unique original variable. Without
loss of generality, Gk(1) = {X1 . . . Xq} and Gk(2) = {Xq+1}. Consider
as representative variables Xp+1 and the linear combination of the
original variables {X1 . . . Xq} that has maximum variance (among
all linear combinations) with the constraint that this new variable is
uncorrelated with Xq+1.

Case 2 induces an optimization problem similar to that associated with
PCA. Let Xk(1) be the vector of variables included in Gk(1) and Xk(2) be
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the variable included in Gk(2). So, the representative variables are W2,k(2) =
Xk(2) and W1,k(1) = γ̂ᵀXk(1) such that

γ̂ = arg sup
{

cᵀΣ̂k(1)c : c ∈ Rq−1 , cᵀc = 1 , cᵀσ̂k(1),k(2) = 0
}

(1)

being Σ̂k(1) the sample covariance matrix of Xk(1) and σ̂k(1),k(2) the sample
covariance vector between Xk(2) and each variable in Xk(1).
Let V be a (q×(q−1))−matrix such that its (q−1) columns and σ forms an
orthonormal basis of Rq , with σ the normalized vector of σ̂k(1),k(2). That is,

the matrix [V σ] is orthonormal. Considering the matrix Ψ̂= VᵀΣ̂k(1)V,
the optimization problem (1) is equivalent to

sup
{

uᵀΨ̂u : u ∈ Rq , uᵀu = 1
}

(2)

The solution of (2) is: u = ê1, the unit eigenvector associated with the

largest eigenvalue (ψ̂1) of Ψ̂, and the value of this supreme is ψ̂1. So,

γ̂= Vê1, and V̂ ar(γ̂ᵀXk(1)) = ψ̂1

In general, if #[Gk(1)] > 1 and #[Gk(2)] > 1, let Xk(1) and Xk(2) the ran-
dom vectors of Gk(1) and Gk(2) respectively. The first two sample canonical
variables are considered

W1,k(1) = α̂ᵀ
1,k(1)Xk(1) and W2,k(1) = α̂ᵀ

2,k(1)Xk(1) of Gk(1)

W1,k(2) = β̂ᵀ
1,k(2)Xk(2) and W2,k(2) = β̂ᵀ

2,k(2)Xk(2) of Gk(2)

where

α̂1,k(1) and α̂2,k(1) : eigenvectors of B̂ = Σ̂−1
k(1) Σ̂k(1),k(2)Σ̂

−1
k(2) Σ̂ᵀ

k(1),k(2)

associated with its two largest eigenvalues (ϕ1 ≥ ϕ2)

β̂1,k(2) and β̂2,k(2) : eigenvectors of Ĝ = Σ̂−1
k(2)Σ̂

ᵀ
k(1),k(2)Σ̂

−1
k(1)Σ̂k(1),k(2)

associated with its two largest eigenvalues (ϕ1 ≥ ϕ2)

The synthetic variables are rescaled so that all have unit sample variance.

3 Homogeneity criterion and clustering procedure

Let G = {X1 . . . Xq} be a cluster of q > 1 variables. Let W1 and W2 be the
two synthetic variables associated with this group.
The homogeneity index of G is defined as

H(G) =

q∑

j=1

1

2

[
ρ2(W1,Xj) + ρ2(W2,Xj)

]
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Therefore, it is a measure of the internal correlation of the cluster, based
on the linear association between the synthetic and the original variables.
In the case of a partition with K clusters, P = {G1 . . . Gk . . . GK}, the
homogeneity index is defined as

H(P) =

K∑

k=1

H(Gk).

Therefore, H(Gk) ≤ card(Gk) ∀k ⇒ H(P) ≤ p.
Once the homogeneity index has been defined, the development proposed
by Chavent et al. (2012) can be applied. The goal is to find a partition that
maximizes this index. A classical hierarchical procedure is proposed, based
on the dissimilarity:

d(C1, C2) = H(C1) +H(C2)−H(C1 ∪ C2)

To evaluate the stability of the nested partitions, it is possible to use the
procedure proposed by Chavent et al. (2012), based on the adjusted Rand
index (Rand, 1971).

4 An example

In order to illustrate the proposed technique, we consider a simulated data
set.The simulation procedure is similar to that used by Chen and Vigneau
(2016). For n = 100 and p = 16, we consider a structure of variables with
three groups, with sizes 10, 8 and 8. First, we have generated n cases of a
vector Z ∼ N6(0,Φ) with

Φ =




1.0 0.3 0 0 0 0
0.3 1.0 0 0 0 0
0 0 1.0 0.4 0 0
0 0 0.4 1 0 0
0 0 0 0 1 0.3
0 0 0 0 0.3 1



.

Second, let ω1j and ω2j be random numbers of a discrete uniform distribu-
tion {−1, 1}, δj a random number of a uniform distribution U [2, 3] and γj
a random number of a uniform distribution U [0.5, 1.5].

Xj = ω1j δj Z1 + ω2j γj Z2 + εj j = 1, . . . , 5

Xj = ω1j γj Z1 + ω2j δj Z2 + εj j = 6, . . . , 10

Xj = ω1j δj Z3 + ω2j γj Z4 + εj j = 11, . . . , 14

Xj = ω1j γj Z3 + ω2j δj Z4 + εj j = 15, . . . , 18

Xj = ω1j δj Z5 + ω2j γj Z6 + εj j = 19, . . . , 22

Xj = ω1j γj Z5 + ω2j δj Z6 + εj j = 23, . . . , 26
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with {εj , j = 1, . . . , 26} i.i.d.N(0, 1). Figure 1 shows the sample correlation
matrix of random vector X = [X1 . . . X26]
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FIGURE 1. Correlation plot of simulated data set (Wei and Simko, 2017)

Finally, we applied the proposed technique, obtaining the dendrogram in
Figure 2. In this figure, the height represents the change produced in the
homogeneity index due to clustering of the variables. Cutting into three
groups, we can see how the result of the technique reflects the process of
data generation. The synthetic variables representative of the clusters are
defined through the coefficients collected in Table 1.
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TABLE 1. Synthetic variables of the clusters and homogeneity index.

Cluster 1 Cluster 2 Cluster 3

W11 W21 W31

X1: -0.4648 X11: 0.1480 X19: 0.2556
X2: 0.5091 X12: 0.0241 X20: 0.0198
X3: -0.2544 X13: 0.2007 X21: -0.1415
X4: 0.5934 X22: 0.0904
X5: -0.2629
X6: 0.0958
X7: 0.1512

W12 W22 W32

X8: 0.0910 X14: 0.0383 X23: -0.0298
X9: 0.1358 X15: 0.1592 X24: -0.0714
X10: 0.2268 X16: 0.0789 X25: 0.0374

X17: -0.0159 X26: -0.0594
X18: 0.1177

H(C1) = 4.1951 H(C2) = 7.1149 H(C3) = 7.3129
Homogeneity index of the partition: H = 18.6230
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Abstract: A regression model for overdispersed count data based on a bipara-
metric case of the Univariate Generalized Waring (UGW ) distribution, called
the Biparametric Generalized Waring (BW ) distribution is developed. The BW
inherits the main properties of the UGW distribution. Besides the fact that the
BW has fewer parameters than the UGW , the main advantage of the former
is that the identification problem of the UGW first two parameters disappears.
These characteristics make the BW distribution of interest as an underlying dis-
tribution in a regression model for overdispersed count data. So, we first recall the
definition and the main properties of the BW distribution. Secondly, we describe
the regression model based on the BW distribution and the estimation method
for its parameters. Finally, we show some application examples to illustrate the
utility of the proposed regression model compared with other usual regression
models for overdispersed count data, such as those based on the negative bino-
mial, generalized Poisson and UGW distributions.

Keywords: Count data; Overdispersion; Regression models; Waring distribu-
tion.

1 The conditional BW distribution

1.1 Definition

The biparametric univariate Waring (BW ) distribution with parameters
α, ρ > 0 was developed by Rodŕıguez-Avi et al. (2018). It is a count data
distribution of infinite range generated by the Gaussian hypergeometric
function. Thus, ifX follows aBW (α, ρ), its probability mass function (pmf)
is

f(x) =
Γ(α+ ρ)2

Γ(α)2Γ(ρ)

Γ(α+ x)2

Γ(2α+ ρ+ x)

1

x!
, x = 0, 1, . . .

This paper was published as a part of the proceedings of the 33rd Inter-
national Workshop on Statistical Modelling (IWSM), University of Bristol, UK,
16-20 July 2018. The copyright remains with the author(s). Permission to repro-
duce or extract any parts of this abstract should be requested from the author(s).
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This distribution is a particular case of the Univariate Generalized War-
ing (UGW ) distribution (Irwing, 1975a,b,c). Specifically, a BW (α, ρ) is a
UGW (α, α, ρ).

1.2 Properties

The main properties of the BW distribution are inherited from the UGW
distribution.
The mean, µ, and the variance, σ2, of the BW distribution have the fol-
lowing explicit expressions:

µ =
α2

ρ− 1
, σ2 =

α2(α+ ρ− 1)2

(ρ− 1)2(ρ− 2)
, (1)

which exist if ρ > 1 and ρ > 2, respectively. In general, the m − th raw
moment exists if ρ > m.
The BW distribution can be obtained as the following two-step mixture:

1. X|λ ∼ P (λ) with pmf

f(x) = e−λ
λx

x!
, x = 0, 1, . . .

2. λ|α, θ ∼ Gamma(α, θ) with density function

f(λ) =
1

Γ(α)θα
λα−1e−λ/θ, λ > 0.

Then, X|α, θ ∼ NB(α, θ) with pmf

f(x) =
1

x!

Γ(x+ α)

Γ(α)

(
1

1 + θ

)α(
θ

1 + θ

)x
, x = 0, 1, . . .

3. θ|α, ρ ∼ BetaII(α, ρ) with density function

f(θ) =
Γ(α+ ρ)

Γ(α)Γ(ρ)
θα−1(1 + θ)−(α+ρ), θ > 0.

Since the BW is a Poisson mixture, it is always overdispersed.
In addition, the variance of the BW model can be split into three compo-
nents

σ2 =
α2

ρ− 1
+

α2(α+ 1)

(ρ− 1)(ρ− 2)
+

α3(α+ ρ− 1)

(ρ− 1)2(ρ− 2)
,

where the first term of this decomposition represents the variability due
to randomness and comes from the underlying Poisson model. The other
two terms refer to the variability that is not due to randomness but it is
explained by the presence of liability and proneness, respectively.
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2 Model specification

Let Y be the response variable of a count model so that Y |x follows a
BW (αx, ρx), where x =

(
1 x1 x2 · · · xk

)
is the vector of covari-

ates. Then, taking into account the expression of the mean of the model
given in (1) and considering the effect that the covariates have on the mean,
that is

µx = ex
′β

where β =
(
β0 β1 · · · βk

)
is the parameter vector, different regres-

sion models based on the BW distribution can be generated by linking its
parameters with the covariates. Specifically,

Model 1. We may consider that ρx does not depend on the covariates but
αx does through the mean, that is, ρx = ρ is a fixed parameter
whereas αx = +

√
µx(ρ− 1). From now on we refer to this model

as BWRM1. To guarantee the existence of the mean and the
computation of αx it is necessary to impose that ρ > 1.

Model 2. On the other hand, we also may consider that αx does not de-
pend on the covariates but ρx does through the expression of
the mean, that is αx = α and ρx = α2/µx + 1. We refer to
this model as BWRM2. Now it is not necessary to impose any
restriction on ρ because it is directly greater than 1, but α must
be positive.

3 Model estimation

The estimation of the regression coefficients β0, . . . , βk and the parameters
α or ρ, according to the case, is carried out maximizing the log-likelihood
function by numerical methods. Thus, if y =

(
y1 · · · yn

)
is a sample

of size n the log-likelihood function is given by

lnL(α, ρ|y) =

n∑

i=1

[2 ln Γ(α+ yi)− ln Γ(2α+ ρ+ yi)]

− 2n ln Γ(α) + 2n ln Γ(α+ ρ)− n ln Γ(ρ).

As we are modelling µ in function of the covariates, in each step of the
optimization processs we must replace the corresponding parameter α or ρ
by its expression in terms of the mean.

4 Practical application

To illustrate the performance of the proposed regression model, we have
carried out several fits to real data and we have compared them with those
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provided by the regression models based on the negative binomial (NB),
generalized Poisson (GP ) and UGW distributions. These models have been
fitted using R (R, 2018). Specifically, we have used the glm.nb function of
the MASS package for the NB regression model, the vglm function of the
pscl package for the GP regression model (Consul and Famoye, 1992) and
the gw function of the GWRM package for the UGW regression model
(Rodŕıguez-Avi et al., 2009). Regarding the BWRM1 and BWRM2, we
have implemented our own fitting functions using the optim function of
the STATS package.
From these examples we conclude that the BWRM can provide more accu-
rate fits (using the Akaike information criterion) than other usual regression
models as well as an interesting partition of the variance in terms of the
covariates. In addition, when the BWRM provides similar results than
the GWRM , the standard errors of the regression coefficients are usually
smaller.
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1 Introduction

In recent years backcountry skiing has become very popular. Unfortunately,
there are quite a number of avalanche accidents which cause about 20 fa-
talities in Austria every year (Pfeifer et al. (2018)). However, efforts have
been made in order to prevent backcountry avalanche accidents, see for
example Munter (1997). Since 2010, the Tyrolean avalanche service is pub-
lishing special information for backcountry skiers every day which they call
‘danger patterns’ (Mair and Nairz (2012)) such as:

1. deep persistent weak layer

2. gliding avalanche

3. rain

4. cold following warm/warm following cold

5. snowfall after a long period of cold

6. cold, loose snow and wind

7. snow-poor zones in snow-rich surrounding

This paper was published as a part of the proceedings of the 33rd Inter-
national Workshop on Statistical Modelling (IWSM), University of Bristol, UK,
16-20 July 2018. The copyright remains with the author(s). Permission to repro-
duce or extract any parts of this abstract should be requested from the author(s).
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8. surface hoar blanketed with snow

9. graupel blanketed with snow

10. springtime scenario.

However, the authors Mair and Nairz did not give any empirical evidence
of the effects of their danger patterns on avalanche danger.
The data collection design of the danger patterns (DP) is done in the
manner of multiple response questionaries: At most 3 patterns are recorded
every day - at least one first order DP (the most important DP) and if
appropriate a second order or 3rd order DP with decreasing importance.

There is some few literature concerning models with multiple response vari-
ables – see Agresti and Liu (2001), Bilder et al. (2000) (2004) (2009) or
Loughin and Scherer (1998), for example. But up to now, we could not find
examples in the literature taking multiple responses with unequal impor-
tance into account.

2 Data and Statistical Models

In this approach, we are going to explore the effects of these danger patterns
on the number of recreational avalanche accidents using accident data in
Tyrol within 2010–2013 (winter period without ‘spring condition’, number
of cases: 288). In order to take the skiers frequency into account we intro-
duce weather/skiing conditions and weekend Yes/No as covariates into the
loglinear model (number of daily accidents as dependent variable) – see
also Pfeifer (2009).
In the following approach we compare 2 types of loglinear models,

log(µt) = GMx + WOENDE + TOURV (1)

where GMx denote danger patterns, TOURV skiing conditions and WOENDE an
indicator for during week/weekend.
In case of Model 1 GMx equal to 0/1 denote no/at least one occurrence of
danger pattern x at a specific observed day. In case of Model 2 GMx equal to
0 denotes no, equal to 1 denotes a first order (or a primary) DP and equal
to 2 denotes a second or third order (a secondary or low-level) DP, which
is a simple approach taking the order of importance into account.
Table 1 and Table 2 show the results restricted to the effects of the DPs
for the 2 different types.

3 Results and Discussion

As we can see, most of the danger patterns do not show significant results
if we consider effects on the number of avalanches accidents - with the
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TABLE 1. Results of Model Type 1.

GMx Estimate Std. Error z value Pr(> |z|)
GM1 0.128 0.320 0.400 0.689
GM2 0.010 0.198 0.051 0.959
GM3 -1.093 0.719 -1.520 0.129
GM4 -0.456 0.334 -1.366 0.172
GM5 1.412 0.212 6.670 0.000
GM6 0.019 0.233 0.081 0.935
GM7 -15.225 661.034 -0.023 0.982
GM8 0.471 0.260 1.811 0.070
GM9 0.489 0.376 1.301 0.193
GM10 -0.825 0.427 -1.931 0.053

TABLE 2. Results of Model Type 2.

Primary danger pattern Secondary danger pattern
GMx Est. Std. E. z Pr Est. Std. E. z Pr

GM1 1.010 1.011 0.999 0.318 0.069 0.334 0.208 0.835
GM2 -0.253 0.327 -0.774 0.439 0.096 0.211 0.456 0.648
GM3 -15.183 696.863 -0.022 0.983 -0.409 0.717 -0.571 0.568
GM4 -15.185 930.829 -0.016 0.987 -0.346 0.333 -1.038 0.299
GM5 1.666 0.219 7.612 0.000 0.341 0.527 0.646 0.518
GM6 -0.104 0.243 -0.427 0.670 0.462 0.299 1.546 0.122
GM7 -15.463 1480.000 -0.010 0.992 -15.161 740.930 -0.020 0.984
GM8 -0.222 1.009 -0.220 0.826 0.533 0.267 1.996 0.046
GM9 0.336 0.202 1.662 0.097 0.489 0.376 1.301 0.193
GM10 -1.356 0.717 -1.892 0.058 -0.384 0.519 -0.739 0.460

exception of the DP GM5 ‘snowfall after a long period of cold’, which is
in some sense in accordance with the results of Pfeifer and Höller (2014).
Additionally, we notice a significant result in case of the DP GM8 ‘surface
hoar blanketed with snow’ on low-level (or as a secondary DP).
There is some discussion in the snow science community that the actual
danger levels are insufficient if we consider recreational accidents only. Es-
pecially danger level ‘3–considerable’ seems to have a (too) wide range
covering the highest number of accidents. As a result of the models above,
we recommend to split up danger level 3 into levels with and without danger
pattern GM5!
In general, further research on multiple response models with multiple re-
sponse variables either in the dependent part or in the explaning part of
statitical models is recommended.
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1 Introduction

The ROC curve is the measure of diagnostic accuracy most widely used
for continuous biomarkers. However, in many circumstances, the aim of a
study may involve prognosis rather than diagnosis. In such cases, the dis-
ease status of an individual is not a fixed characteristic but it varies with
time (e.g, death and alive). To assess the accuracy of continuous biomarkers
for time-dependent disease outcomes, time-dependent extensions of Sensi-
tivity, Specificity and ROC curve have been proposed (e.g., Pepe et al.
2008). Moreover, it is well known that the accuracy of a biomarker can be
affected by external information or covariates, for instance, characteristics
of the patient (Pepe, 2003). In these situations, if we failure to incorpo-
rate covariate information into the ROC analysis, the marginal or pooled

This paper was published as a part of the proceedings of the 33rd Inter-
national Workshop on Statistical Modelling (IWSM), University of Bristol, UK,
16-20 July 2018. The copyright remains with the author(s). Permission to repro-
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ROC curve could lead to erroneous conclusions, and thus conditional or
covariate-specific measures of accuracy are needed. This work focuses on
the estimation of the conditional cumulative-dynamic time-dependent ROC
curve. In contrast to previous proposals in this setting, our approach (1)
allows for non-linear effects of continuous covariates on the accuracy of
prognostic biomarkers, and (2) relaxes the proportional hazards assump-
tion.

2 Notation and preliminaries

Let T denote the time to the event of interest, Y the quantitative biomarker,
and X the p-variate vector of covariates we are interested in. The condi-
tional or covariate-specific time-dependent cumulative Sensitivity (Se) and
dynamic Specificity (Sp) are defined as

SeC(υ, t | x) = Pr[Y > υ | T ≤ t,X = x],

SpD(υ, t | x) = Pr[Y ≤ υ | T > t,X = x].

Thus, the conditional cumulative-dynamic time-dependent ROC curve is

ROC
C/D
t,x (p) = SeC

(
(1− SpD)−1 (p, t | x) , t | x

)
with p ∈ (0, 1) .

Note that with the cumulative Sensitivity and dynamic Specificity interest
lies in evaluating the discriminatory capacity of the biomarker Y in dis-
tinguishing those individuals – with a covariate vector value x – that will
experience the event of interest prior to time t (cases) from those with the
event after t (controls). Note also that a possibly different ROC curve, and
therefore discriminatory capacity, can be obtained for each covariate vector
value x and each time point t.
It can be easily shown that the above expressions can be expressed as

SeC(υ, t | x) =
Pr[Y > υ, T ≤ t |X = x]

Pr[T ≤ t |X = x]
=

∫∞
υ

(1− S (t | y,x)) dF (y | x)∫∞
−∞ (1− S (t | y,x)) dF (y | x)

,

(1)

SpD(υ, t | x) =
Pr[Y ≤ υ, T > t |X = x]

Pr[T > t |X = x]
=

∫ υ
−∞ S (t | y,x) dF (y | x)
∫∞
−∞ S (t | y,x) dF (y | x)

.

(2)

where

S (t | y,x) = P (T > t | Y = y,X = x) and F (y | x) = P (Y ≤ y |X = x) .
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3 Penalised-based estimator

Expressions (1) and (2) make it clear that in order to estimate SeC and
SpD we simply need an estimator of S (t | y,x) and F (y | x). For estimating
S (t | y,x), we assume a regression-type model for the conditional hazard
function λ (t | y,x), i.e.,

λ (t|y,x) = exp

(
α0 + ht (t) + hy (y) +

A∑

a=1

fa (xa) (3)

+fy,t (y, t) +
B∑

b=1

fb (t,xb) +
C∑

c=1

fc (y,xc)

)
,

where xa, xb and xc denote subsets of covariates, and h{·} and f{·} define
generic representations of different types of covariates and effects (linear or
parametric, smooth, etc). Note that the inclusion of functions fy,t and fb
allow relaxing the proportional hazards assumption. Estimation is based on
the piecewise exponential model (Friedman, 1982; Kauermann, 2005). Via
a data augmentation strategy, the piecewise exponential approach allows a
(penalised) Poisson-maximum likelihood estimation scheme for model (3)
in the presence of censored observations. In addition, it also allows using
Generalised Linear Array Models (GLAM, Currie et al, 2006) to speed up
computation.
In order to estimate F (y | x), we propose the following model

Y | (X = x) = β0 +
V∑

v=1

fv (xv) + ε, (4)

with xv and fv as defined before. We assume that E(ε) = 0, V ar(ε) = σ2

and ε is independent of X. Thus, F (y | x) = H
(
y − β0 −

∑V
v=1 fv (xv)

)
,

where H(u) = Pr(ε ≤ u).
For the specification of the (multidimensional) smooth functions involved
in models (3) and (4), use is made of penalised splines (P-splines, Eilers
and Marx, 1996, 2003), in combination with (tensor-product of) B-spline
basis functions. In addition, each smooth function is decomposed into a
penalised and an unpenalised component (see. e.g., Currie and Durban,
2002). This decomposition presents several attractive features: (a) redun-
dant components can be easily identified; and (b) generalised linear mixed
models estimation techniques can be used. In this work, estimation of mod-
els (3) and (4) is done by means of the method described in Rodŕıguez-
Álvarez et al. (2018).

4 Application

The Global Registry of Acute Coronary Events (GRACE) scoring system
is a well-known risk score (biomarker) for early prognosis of death after dis-
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charge in patients who suffered from acute coronary syndrome (ACS). In
the construction of the GRACE scoring system, the left ventricular ejection
fraction (LVEF), a very well-established prognosticator of mortality in the
ACS scenario, was not included, mainly due to presence of missing values.
Thus, the death risk estimates from the GRACE risk score might be mis-
leading because the LVEF is conspicuous by its absence in the construction
of the GRACE. In order to check this hypothesis, we applied the proposal
presented in this work with the aim of evaluating the possible effect of the
LVEF on the prognostic value of the GRACE risk score.
The study population consists of 3488 consecutive patients admitted due
to ACS at the Hospital Cĺınico de Santiago de Compostela, Spain. The
event of interest was all-cause mortality during follow-up (81% censorship).
Figure 1 shows the estimated time-dependent area under the ROC curve
(AUC) for the GRACE score adjusted by LVEF at t = 6, t = 12 and
t = 18 months after discharge. As can be observed, there is a clear effect of
the LVEF on the prognostic value of the GRACE risk score. The red lines
represent the estimated marginal/pooled time-dependent AUC, i.e., the
time-dependent AUC obtained when pooling the data without regard the
LVEF values. These results highlight that not accounting for the possible
modifying effect of the LVEF on the prognostic value of the GRACE risk
score would yield to optimistic results.
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FIGURE 1. Estimated time-dependent AUCs for the GRACE score adjusted by
LVEF(%) at t = 6, t = 12 and t = 18 months after discharge (solid black lines).
The red lines represent the marginal/pooled time-dependent AUC.
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Abstract: Prostate Cancer (PC) represents the most common malignancy af-
fecting men in western countries and Ireland has the highest rate of PC in Eu-
rope. Prostate Specific Antigen (PSA), which is a glycoprotein produced by the
prostate gland, is usually increased in patients with PC. Therefore, PSA plays an
essential role in the detection of patients with PC. Generally, the normal value
for PSA has been considered as 4.0 ng/mL or lower. However, several other fac-
tors including age, urinary tract infection and prostatitis can cause an increase
in the PSA levels. For this reason, age-related PSA reference ranges are used
in most hospitals for the screening of PC. Further investigation is required to
detect the presence of PC for a man whose age-related PSA is above the normal
range. Prostate biopsy is the definitive diagnostic test required to establish a
diagnosis of PC. However, using normal reference ranges to screen for PC can
often lead to unnecessary biopsy with an increased cost and potential compli-
cations including infection, bleeding and etc. To overcome this drawback, we
instead suggest generating personalized dynamic ranges for PSA and for other
clinical biomarkers using Bayesian approaches and streaming algorithms. In con-
trast with normal ranges which in a sense weight all subjects in a certain age
bracket of the population equally, dynamic reference ranges are tailored to the
measurements observed on one subject, and as a result are more accurate in de-
termining meaningful changes in biomarker trajectory. The MCMC method is
applied to generate dynamic ranges from the posterior predictive distribution for
the Bayesian approach while a recently proposed approximate EM algorithm for
streaming data is modified to produce computationally efficient dynamic ranges
for large streaming datasets.

This paper was published as a part of the proceedings of the 33rd Inter-
national Workshop on Statistical Modelling (IWSM), University of Bristol, UK,
16-20 July 2018. The copyright remains with the author(s). Permission to repro-
duce or extract any parts of this abstract should be requested from the author(s).
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1 Introduction

Biological markers (Biomarkers) are characteristics that represent a nor-
mal or abnormal biological process in the diagnosis of a disease or a con-
dition. They play a key role in understanding the underlying pathogenesis
of disease and extending our knowledge of normal, healthy physiology. De-
termining the trend and changes of biomarkers preceding a clinical stage
will not only enable early detections but also facilitate the required thera-
peutic trials. A reference interval, generated from a cross-sectional analysis
of healthy individuals free of the disease of interest, is typically used when
interpreting a set of biomarker test results for a particular patient. Refer-
ence ranges often are defined as an inter-percentile range. Depending on the
knowledge of the biomarker’s underlying distribution, either parametric or
non-parametric inter-percentile intervals can be selected. In the paramet-
ric method, the required percentiles will be calculated according to the
underlying distribution of the biomarker by estimating the population pa-
rameters (e.g. mean, standard deviation). However, for the non-parametric
method, where no distribution is assumed for the biomarkers, the 95% ref-
erence interval will be defined as the middle 95% of the biomarker values.
A confidence interval around the percentiles is necessary for measuring the
uncertainty of the interval. These ’static’ normal ranges not only incorpo-
rate sampling error and uncertainty due to the sampling process but also
may not be reflective of a particular individual in the population with longi-
tudinal follow up. Therefore, when biomarkers are collected longitudinally
for subjects, dynamic reference ranges which adapt to account for between
and within subject variabilities are needed for effective diagnosis. This is
especially useful when the within individual variability is much less than
between individual variability.
In this study generating such personalized dynamic ranges for clinical
biomarkers will be discussed using Bayesian approaches and streaming al-
gorithms. The performance of the different models was assessed through
simulation study under different scenarios. Also, the proposed models were
evaluated on a cohort of men with longitudinally recorded PSA measure-
ments, and used to define personalized risk zones for PC diagnosis.

2 Methodology

Bayesian approaches have the capacity to intelligently combine information
from the general population with the measurements for a given individual
to construct a personalized reference range. Using information gleaned from
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the population allows the construction of critical ranges for the first mea-
surement of the individual. This range is then adapted as more observations
have been gathered on the same subject. Finally, these critical ranges will
be predominantly based on the individual measurements as the number of
biomarker values becomes very large for the individual. For example let
[xi1, ..., xin] shows a series of biomarker values for a specific individual over
n follow up times. Therefore, a new measurement is considered as abnormal
if it falls beyond the α

2 ∗100% and (1−α
2 )∗100% quantiles of P (Xi,new|data);

where data refers to both population and subject information up to, but
not including the new observation.
The Bayesian approach for the computation of proposed ranges is compu-
tationally intensive. For example, in large data streaming problems, there
is a need for a framework which is computationally efficient. This can be
achievable using an approximate EM algorithm which is very quick for large
data. Ippel and etc. (2016) proposed an approximation of the EM algorithm
to fit a random intercept model to large streaming datasets. Unlike the EM
algorithm which uses all the data to update the model parameters, their
new method only uses a single data point, some summary statistics on the
individual level, and the previous estimates of the model parameters, to up-
date the model parameters. Their approach is then adapted in our study to
define the dynamic range from the distribution of Xij |Xi1, ..., Xi(j−1) when
the model parameters are estimated using both the population information
and the previous records of the individual.

3 Results:

The performance of the three different approaches in detecting the abnor-
mal observations in a sample of biomarker values was assessed by measuring
the area under the ROC curve (AUC) through a simulation study. Different
scenarios were considered by varying the sample size (n), individual repli-
cations (ni), and the ratio of within subject variability to between subject

variability (r1 =
var(σ2

i )
τ2 , r2 =

E(σ2
i )

τ2 ), where σ2
i and τ2 representing the

within subject variability for subject i and between subject variablility,
respectively.
The simulation findings show that the overall performance of the Bayesian
approach is the best for all situation. However, when within subject vari-
abilities are large relative to between subject variability, all three approaches
resulted in a similar performance suggesting the normal range is as good as
the other two approaches (figure 1). Additionally, as can be seen in figure
2, when both sample size and individual’s replication increases, the mean
AUC for the EM algorithm approaches the mean AUC for the Bayesian
approach with both methods significantly better than the static reference
ranges.
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The application of the proposed models to detection of PC using longitu-
dinal records of PSA biomarker is displayed in figure 3. As can be seen the
patient is diagnosed with PC at the seventh follow up time using both the
Bayesian and EM algorithm, while the reference range was unable to de-
tect his cancer as all of the PSA test results are within the static reference
range.
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FIGURE 1. The AUC distribution of the three approaches (Reference Range,
Bayesian, and Streaming EM algorithm) for detection of outliers based on differ-
ent combination of r1&r2.

4 Conclusion:

This study introduces the idea of dynamic ranges for a longitudinal continu-
ous response through the Bayesian model and the streaming EM algorithm.
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FIGURE 2. The AUC distribution of the three approaches (Reference Range,
Bayesian, and Streaming EM algorithm) for detection of outliers based on differ-
ent combination of n&ni

The generation of personalized dynamic ranges for clinical biomarkers helps
researchers and physicians make more reliable decisions in terms of what
can be considered as the normal physiology of an individual. Addition-
ally, the models can be easily extended to allow the incorporation of other
covariates and factors (e.g. age, gender) that likely affect these ranges.
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FIGURE 3. Personalized Dynamic Range for a patient diagnosed with PC based
on the three different approaches.
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Abstract: Data from a drought experiment in Populus nigra is used to develop
a model-based network for the relationships between gene expression and pheno-
typic traits. We give an overview about the complex experiment as well as the
pre-processing steps. Ultimately we propose two different procedures for recon-
struction a gene-phenotype network for time-course data.
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1 Setting the scene - description of the data

The data that forms the basis for the case study originates from a large
experiment in Populus nigra: three genotypes of this tree species were
planted in the greenhouse. The treatment group of plants was subjected
to a drought regime by reducing the soil relative extractable water to 20%
over the course of 2 weeks.
In this experiment different types of data were collected. On the one hand
RNA was extracted from four replicates per treatment (control and drought).
We used the total reads per gene as input for further analysis. Part of the
RNA extraction took place over time at five equidistant time points.
On the other hand, phenotypic traits were measured on a subset of the
plants (in both conditions). Part of the measurements were repeated at
five instances during the experiment. The nature of these measurements
and the RNA extraction resulted in partial harvests of the plants. Other
phenotypes were only determined once, either at the final harvest or at a
different time point. The measurements were also done on different tissues
(especially the leaves, roots and part of the stem of the trees).

This paper was published as a part of the proceedings of the 33rd Inter-
national Workshop on Statistical Modelling (IWSM), University of Bristol, UK,
16-20 July 2018. The copyright remains with the author(s). Permission to repro-
duce or extract any parts of this abstract should be requested from the author(s).
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We will focus on gene expression and phenotype information that was col-
lected over five time points. For this only one genotype was selected. Ad-
ditionally we will restrict ourselves for this analysis to data that is related
to the leaves (such as the leaf area, cell density etc.). The discussion will
briefly touch upon other available data from the experiment.

1.1 Remarks on experimental design

The whole experiment consisted of 214 pots that were distributed over two
adjacent greenhouses. Plants were moved automatically for watering and
weighing to a station inside the greenhouses. While the basic experimental
design was a randomized complete block design including three genotypes,
two treatments and ten replicates per genotype-treatment combination, the
actual set-up changed during the course of the experiment due to the pots
moving to the station and the intermediate harvests.

1.2 Remarks on RNAseq analysis

The RNA seq raw reads were processes in a pipeline consisting of procedures
to cut the adapter, filter and trim the data (using cutadapt and Prinseq).
The reads were aligned and mapped with TopHat and BowTie to the P.
trichocarpa genome before ultimately counting the total reads per gene
using HTSeq.

2 Model-based networks for time-course data

In this analysis we are focussing on the data that were collected over five
time points during the experimental period. Our goal is to reconstruct a
network to relate differentially expressed genes and phenotypes.
In order to select these genes and phenotypes we will first fit a linear model
and test for significant treatment effects. Subsequently we proceed with the
fitted values from this model:

y = ti+ trt+ s(ti)× trt+ ε

with y being the (log1 0) gene counts respectively the trait (if necessary:
transformations thereof), ti is a factor variable for time, trt represents the
treatment of control vs. drought as well as an interaction term s(ti) ×
trt that includes time a smooth spline. We perform a joint F-test for the
treatment terms to select for differentially expressed genes and phenotypes.
For the network reconstruction we use the fitted values from this model.
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2.1 Two approaches to network reconstruction

After the pre-processing described above we explored two different ap-
proaches for the network reconstruction. On the one hand we reconstructed
the gene-phenotype network in a hierarchical set-up. This set-up was in-
spired by Kim et al. (2014). We assume that genes affect traits and connect
to other genes, and traits may also connect to other traits. The sequence
of steps for this approach is depicted in Figure 1. Our data-set ultimately
resulted in a network including nine leaf traits as well as a number of genes.
The genes underwent a three-step selection procedure: they were differen-
tially expressed according the model above, a subsequent cluster analysis
was performed and ultimately we studied their functional annotation which
resulted in 62 genes (from more than 30000 genes in the reference genome).
Forward selection in a regression of the individual traits on the genes re-
sulted in seven genes to be included in the final network (see Figure 2).
On the other hand we followed a network estimation procedure that is
based on the graphical lasso. It is for large parts in parallel to the analysis
described in (Bartzis et al., 2017). This network reconstruction first focusses
on estimating the gene network (using the graphical lasso with StARS
regularization), find association between genes and traits, select the traits
that are related to the genes and reconstruct networks based on this part of
the variation. Results of this procedure on the same dataset will be reported
elsewhere.

3 Conclusion

This case study of a time-course experiment in P. nigra included a number
of steps ultimately leading to a gene-phenotype network. We used two dif-
ferent approaches for the network reconstruction. The results look promis-
ing both for the regression-based framework in a hierarchical set-up as well
for the procedure largely based on the application of the graphical lasso.
They form a starting point for further biological interpretation of the un-
derlying mechanisms.
The analysis above focussed on time-course data limited to one type of
tissues. We also analyzed other data from the same experiment that in-
cluded measurements from different genotypes as well as different tissues.
The presented framework above can be adapted this situation, however it
also includes challenges arising from the inclusion of different tissues as well
as an unbalanced measurement scheme.
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FIGURE 1. Flowchart for the analysis of RNAseq data and phenotypic data from
a time course experiment in P. nigra

FIGURE 2. Results of a model-based network for the time-course data set



152 Gene-phenotype networks

Acknowledgments: This work has been partially funded by the Euro-
pean Union’s Seventh Framework Programme under the grant agreement
FP7-311929 in the project WATBIO. (Development of improved perennial
non-food biomass and bioproduct crops for water stressed environments)
from 2011-2017. The data for the case study was collected within WAT-
BIO. We would like to thank the following persons involved in this ex-
periment: Hazel Smith, Henning Wildhagen, Cyril Douthe, David Cohen,
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1 Background

Flood Frequency Analysis (FFA) aims to quantify the risk posed by floods
to specific areas by, for example, estimating the size of flood that an area
would expect to see on average once in 200 years. One approach towards
FFA involves fitting a statistical model to the series of maximum annual
river flows. In fitting such a model, hydrologists typically only use data that
has been collected in the modern era through the systematic measurement
of river flows. One drawback to this approach is that the duration of these
records is short, being only 40-50 years long on average for the UK – far
shorter than the time period for which prediction is often required.
Fortunately, there exist sources of non-systematic data which can comple-
ment the systematic record. These include flood marks carved into bridges,
old photographs, and newspaper reports. Inclusion of this data into the
modelling procedure can improve the quality of subsequent inference.

2 Data

This analysis concerns data collected for the river Lune at Caton in Lan-
cashire, UK. The systematic record – available from the National River
Flow Archive at http://nrfa.ceh.ac.uk/data/station/peakflow/72004 – spans
1968 to 2015 (48 years). There are an additional eight historical records
presented in NERC (1975), with the earliest being in 1892, making the
historical record at least 76 years long. Of particular note is the 2015 flood

This paper was published as a part of the proceedings of the 33rd Inter-
national Workshop on Statistical Modelling (IWSM), University of Bristol, UK,
16-20 July 2018. The copyright remains with the author(s). Permission to repro-
duce or extract any parts of this abstract should be requested from the author(s).
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which, at 1742m3/s, was larger than any other flood event in both the
systematic and historical records. This data is presented in Figure 1 along
with the perception threshold, which is the flow rate during the historical
period for which it is assumed any flow in excess would be recorded. In this
case the perception threshold was set to be the flow corresponding to the
smallest of the historical records.

1900 1920 1940 1960 1980 2000 2020
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00
15

00

Water Year
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3  / 
s)

Historical records
Systematic records

FIGURE 1. Historical and systematic data for the river Lune at Caton. The
dashed line is the perception threshold.

3 Methods

For this analysis, the annual maxima were assumed to originate from a
Generalised Logistic (GLO) distribution, in line with analysis of an older
version of this dataset by Prosdocimi (2018), and the GLO’s status as the
distribution for UK river flow annual maxima preferred by the Institute
of Hydrology (1999). Two separate distributions were fitted – one with,
and one without, the historical records. The parameters in each case were
fitted using a Maximum-Likelihood method similar to the one presented in
Macdonald et al. (2014).

4 Results

The return curves – plots of the flow rate against return period – for both
models are presented in Figure 2, along with associated 95% confidence
intervals. It can be seen that the return curves have shifted to the right,
meaning that inclusion of the historical records into the estimation proce-
dure has resulted in a longer return period being estimated for any given
flow rate. This is in line with expectations we might have from looking at
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Figure 1, as it shows that there are three floods in the systematic record
which are larger than any flood in the historical record.
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FIGURE 2. Return curves and 95% confidence intervals for the Lune at Caton
for the systematic records (red), and systematic+historical records (black).

It can also be seen that the confidence intervals narrow significantly with
the inclusion of historical records, demonstrating the utility of such records
in practical situations where the uncertainty in a design flood estimate is
required in addition to its magnitude.

5 Limitations and Future Work

One assumption in the methodology employed in this analysis is that the
underlying flow-generating process is stationary, i.e. that the annual max-
ima in different years are identically distributed. However, the stationarity
of peak river flow series is becoming an increasingly untenable assump-
tion. Figure 1 is suggestive of non-stationarity in the series considered in
this work, as the largest three floods in the 124 year record have occurred
within the last 22 years. Future work should assess the extent to which
non-stationarity diminishes the utility of historical records.
Another assumption made in this analysis is that the flood magnitudes are
known exactly. Even for the systematic record there will be uncertainty
since it’s the depth of the river which is measured and then converted
into a flow estimate via a rating curve. The degree of uncertainty is much
more serious for historical data, however, with Hosking and Wallis (1986)
suggesting errors of ±25% to be “realistic”. While the error in any given
historical record is difficult to assess, such work would be worthwhile since
a more thorough accounting of the sources of uncertainty will be necessary
to give estimates of design flood uncertainty which are more realistic than
those shown in Figure 2.
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1 Introduction

Nonparametric quantile regression (QR; Koenker (2004) and Koenker 2005()
aims to model covariate effects on the response quantiles without impos-
ing any rigid and parametric relationship with covariates. The regression
model can be written as

Q(τ) = s1(x1) + s2(x2) + . . .+ zTβ

where the smooth functions s(·) are expressed via low rank B-splines,
and penalties are set on the corresponding coefficients to avoid overfit-
ting. Without losing in generality we write the penalized objective to be
minimized as

L(β) =
∑

i

ρτ (yi − xT

i β) + λ || Dβ ||1 (1)

where D is a penalty matrix, including possibly zero row vectors for unpe-
nalized parameters. The smoothing parameter λ > 0 is assumed ‘known’
hereafter. We propose an induced smoothing (IS) approach to compute
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national Workshop on Statistical Modelling (IWSM), University of Bristol, UK,
16-20 July 2018. The copyright remains with the author(s). Permission to repro-
duce or extract any parts of this abstract should be requested from the author(s).
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standard errors for the parameter estimates. Section 2 describes the pro-
posed algorithm, and an analysis of data concerning respiratory disease is
included in Section 3.

2 Methods

The self-induced smoothing method was introduced by Brown and Wang
(2005) to deal with unsmooth estimating equation. The gradient vector for
the objective (1) is

U(β) = −XT(τ − I(y < Xβ)) + λDTsign(Dβ). (2)

which is clearly unsmooth. The IS aims to replace U(β) with its smooth
counterparts obtained via expectation over random perturbations weighted
by the covariance matrix var(β̂) = V , namely Ũ(β) = Ez[U(β + V 1/2z)]
where z ∼ N(0, Ip). For the estimating equations (2), application of IS
after some algebra leads to

Ũ(β) = −XT

{
τ + Φ

(
y −Xβ

diag(XVXT)1/2

)
− 1p

}
+

+λ

{
2DTΦ

(
Dβ

diag(DVDT)1/2

)
−DT1k

}
, (3)

where Φ(·) represents the cumulative distribution function of a standard

normal. Unlike U(·), Ũ(·) is smooth thus the derivative Ũ ′(β) exists and
its computation is relatively straightforward.
Smoothness of estimating equations and relative derivatives allows to apply
the usual sandwich forumula to compute the covariance matrix of estimator
β̂,

V = Ũ ′−1IŨ ′−1 (4)

where I = τ(1 − τ)XTX. Clearly, Ũ requires V (see (3)) and in turn V

needs Ũ (see (4)), hence an iterative procedure is needed, see Brown and
Wang (2005) or Cilluffo et al. (2016).

3 Application

The dataset refers to an epidemiological study carried out in 1988-1991
in the North of Italy, including 1251 males and 1316 females. The study
aims to assess determinants of the inspiratory capacity (IC), a measure
of lung’s function, using the following nine predictors: age, height, body
mass index (bmi), sex, and indicators for current smoking, occupational
exposure, cough, wheezing, and asthma. The conditional distributions of
the response IC given age and height, as suggested by Figure 2, emphasize
a non-linear pattern.
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FIGURE 1. Scatterplots of inspiratory capacity versus age and height.

We use a quantile regression models (at probability values τ = 0.50, .90)
with smooth covariates age and heights and linear terms for the remaining
covariates

Q(τ) = s(xage) + s(xheight) + zT

bmiβ1 + zT

sexβ2 + zT

smokeβ3

+zT

occupβ4 + zT

wheezeβ5 + zT

asthmaβ6.

The smoothing parameters of the P-splines are selected using 10-folds cross
validation. Application of the IS algorithm presented in Section 2 leads to
covariance matrix based on sandwich formula (4). Furthermore, extracting
the submatrices relevant to the smooth effects allows to compute the point-
wise standard errors for the fitted quantile curves. Results are reported in
Figure 2.

4 Conclusion

In this paper we have proposed an induced smoothing approach to compute
the covariance matrix of the parameter estimates in a penalized quantile
regression model. Preliminary results on a real dataset of the inspiratory
capacity discussed in Section 3 seem promising. In the next version of the
paper we will present further details and results from simulation experi-
ments.

References

Brown, B.M., and Wang, Y.G. (2015). Standard errors and covariance ma-
trices for smoothed rank estimators Biometrika, 92, 149 – 158.



160 The induced smoothing quantile regression

20 40 60 80

0.
0

0.
5

1.
0

1.
5

Age

IC

0.50

0.90

140 160 180 200 220

1
2

3
4

Height

0.50

0.90

FIGURE 2. Smooth fitted quantile curves (at τ = 0.5 and τ = 0.9) of inspiratory
capacity as a function of age and height with pointwise 95% confidence intervals
based on standard errors coming from the IS approach.

Cilluffo (2015). The induced smoothed LASSO Proceedings of the 31st
IWSM, 1, 71 – 76.

Koenker, R. (2004). Quantile regression for longitudinal data Journal of
Multivariate Analysis, 91, 74 – 89.

Koenker, R. (2005). Quantile regression, Cambridge University Press.

Muggeo, V.M.R., Sciandra, M., Tomasello, A., Calvo, S. (2013). Estimat-
ing growth charts via nonparametric quantile regression: a practical
framework with application in Ecology. Environmental and Ecological
Statistics, 20, 519 – 531.



A new Poisson item count technique with
non-compliance

Tang, Man-Lai1, Wu, Qin2, Chow, Hoi Sze Daisy3

1 Hang Seng Management College, Hong Kong
2 South China Normal University, P. R. China
3 Cheers Psychological Consultancy Services

E-mail for correspondence: mltang@hsmc.edu.hk

Abstract: Item count technique (also known as list experiement) is a popu-
lar survey method for eliciting truthful responses to sensitive questions. While
item count technique may be less prone to bias than direct questioning, it may
create the undesirable ceiling and/or floor effects. Although the Poisson item
count technique was developed to solve the ceiling effect by replacing the list
of non-sensitive questions by a single non-sensitive question with outcomes fol-
lowing Poisson distribution, the floor effect is not well addressed. It should be
noted that all (Poisson) item count techniques rely on an impractical core as-
sumption of no liars (i.e., compliance from the respondents). In this manuscript,
we will introduce a new Poisson item count technique to measure the prevalence
of non-compliance. The proposed technique allows some of the respondents not
to comply with the design, which yields more accurate and reliable parameter es-
timate. Survey design, parameter estimation, and some results will be presented.
Simulation studies are conducted to assess our method.

Keywords: Item count technique; Non-compliance; Sensitive question.

1 Design and model

Assume that the sensitive question of interest is binary (e.g., whether the
respondent has ever shoplifted) and we would like to estimate the preve-
lance of the sensitive characteristic with non-compliance. For this purpose,
let n1 and n2 respondents be randomly assigned to the control and treat-
ment groups, respectively (with n = n1 + n2). All the n (i.e., n1 + n2)
respondents are required to read the following non-sensitive question:
(1) How many times did you travel abroad last year?

This paper was published as a part of the proceedings of the 33rd Inter-
national Workshop on Statistical Modelling (IWSM), University of Bristol, UK,
16-20 July 2018. The copyright remains with the author(s). Permission to repro-
duce or extract any parts of this abstract should be requested from the author(s).
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Besides, all the n1 (or n2) respondents in the control (or treatment) group
need to read the following question
(2) If you were born between January and March (or April and December)
and you never shoplifted (i.e., without the sensitive characteristic), the
answer is 0; otherwise 1.
Finally, all respondents are required to report ONLY the sum of the an-
swers to the two questions. For examples, respondents who were born in
January and never shoplifted before should report 4 and 5 respectively if
they were assigned to the control and treatment groups and travelled four
times abroad last year.
Under our proposed design, the first question (i.e., number of times trav-
elling abroad) is a counting variable with possible answers (denoted by
X) being 0, 1, . . . and assumed to follow the Poisson distribution with pa-
rameter being λ. In the second question, the non-sensitive question (i.e.,
period of being born) with binary answers (denoted by W ) is assumed to be
independent with the sensitive question (i.e., ever shoplifted before) with
binary outcomes (denoted by Z). Here, W = 1 represents the respondent
was born between April and December; = 0 otherwise, and p = Pr(W = 1)
is assumed to be known. Let Z be the answer to the sensitive question
(e.g., have you ever shoplifted?) with ‘yes’ and ‘no’ answers. Also, Z = 1
if the respondent possesses the sensitive characteristic; = 0 otherwise. It is
clear that Z follows the Bernoulli distribution with the unknown parameter
π = Pr(Z = 1). It is our aim to estimate π. It is noteworthy that some
respondents with the embrassing characteristic might intentionally report
the untruthful answer 0, with a probability θ, to demonstrate their posi-
tive image due to guilty consciousness. In order to take non-complioance
into our consideration, we let U be the non-compliance variable. Obvi-
ously, U and Z are not independent. The probability of non-compliance
θ = Pr(U = 1) is also investigated, which can partly deal with the cheat-
ing behavior in the existing Poisson ICT. Furthermore, it is noticed that
θ = Pr(U = 1) = Pr(U = 1|Z = 1), and Pr(U = 1|Z = 0) = 0. Let Q(i) be
the answer to the second question in the i-th group with i = 1 representing
the control group; and = 2 representing the treatment group. Hence, we
have Pr(Q(1) = 0) = (1−p)(1−π) +πθ, and Pr(Q(2) = 0) = p(1−π) +πθ.

2 Estimation

Suppose the observed data in the control group and treatment group are

y
(1)
1 , . . . , y

(1)
n1 and y

(2)
1 , . . . , y

(2)
n2 , respectively. Without loss of generality, we

assume the first m0 observations in the control group and the first m1 obser-
vations in the treatment group are 0. We showed that the moment estimator

for π is given by π̂M = ȳ(2)−ȳ(1)
1−2p . However, π̂M may not lie in the interval [0,

1]. Alternatively, we propose to obtain the maximum likelihood estimate
(MLE) based on the well-known EM algorithm. For this purpose, we de-
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fine missing data as Ymis = {{x(1)
j , z

(1)
j , u

(1)
j }n1

j=1; {x(2)
j , z

(2)
j , u

(2)
j }n2

j=1}. In

the missing data, {x(1)
j }, {x

(2)
j } are the answers to the first non-sensitive

(counting) question, {z(1)
j }, {z

(2)
j } are the answers to the sensitive question,

and {u(1)
j } {u

(2)
j } are the non-compliance variables in the first and second

groups, respectively. After some calcualtions, we can conclude that the M
step calculates the MLEs based on the complete likelihood

π =

∑n1

i=1 z
(1)
i +

∑n2

i=1 z
(2)
i

n1 + n2
, θ =

∑n1

i=1 u
(1)
i +

∑n2

i=1 u
(2)
i∑n1

i=1 z
(1)
i +

∑n2

i=1 z
(2)
i

, and

λ =

∑n1

i=1 x
(1)
i +

∑n2

i=1 x
(2)
i

n1 + n2
.

while the E step is to find the following conditional expectation:

E(X
(1)
i |y

(1)
i ) =

y
(1)
i λ [(1− p)(1− π) + πθ] + y

(1)
i (y

(1)
i − 1) [p(1− π) + π(1− θ)]

λ [(1− p)(1− π) + πθ] + y
(1)
i [p(1− π) + π(1− θ)]

,

E(X
(2)
i |y

(2)
i ) =

y
(2)
i λ [p(1− π) + πθ] + y

(2)
i (y

(2)
i − 1) [(1− p)(1− π) + π(1− θ)]

λ [p(1− π) + πθ] + y
(2)
i [(1− p)(1− π) + π(1− θ)]

,

E(Z
(1)
i |y

(1)
i ) =

π
[
y

(1)
i (1− θ) + λθ

]

λ [(1− p)(1− π) + πθ] + y
(1)
i [p(1− π) + π(1− θ)]

,

E(Z
(2)
i |y

(2)
i ) =

π
[
y

(2)
i (1− θ) + λθ

]

λ [p(1− π) + πθ] + y
(2)
i [(1− p)(1− π) + π(1− θ)]

,

E(U
(1)
i |y

(1)
i ) =

πλθ

λ [(1− p)(1− π) + πθ] + y
(1)
i [p(1− π) + π(1− θ)]

, and

E(U
(2)
i |y

(2)
i ) =

πλθ

λ [p(1− π) + πθ] + y
(2)
i [(1− p)(1− π) + π(1− θ)]

.

Here, the moment estimate π̂M as an initial value for the EM algorithm.
We repeat the E and M steps until the MLEs are convergent (denoted as
π̂MLE). It is noteworthy that π̂MLE is lying in the interval [0, 1].

3 Results and conclusions

To evaluate the performance of our proposed MLEs, we consider two cases
for non-compliance: θ = 0.3 and θ = 0.4. In both cases, π are set to be
(0.05, 0.1, 0.2, 0.3, 0.4), p = 0.2, λ is set to be 2, and n1 = n2 = 1000 for
θ = 0.3 and n1 = n2 = 2000 for θ = 0.4. The corresponding results based
on 1000 repetitions are reported in Tables 1 and 2, respectively. According
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to Tables 1 and 2, we observe that our MLE for π appears to be a consistent
estimate, especially when π is bounded away from 0. The performance of
the MLEs improves when sample size increase. In conclusion, our MLEs are
reliable estimators. Future work include (i) confidence interval construction
for π; (2) hypothesis testing for θ; and (3) reliable estimation methods for
small sample designs and/or rare sensitive proportions.

TABLE 1. Mean of estimates based on 1000 repetitions when λ = 0.2, θ = 0.3
and n1 = n2 = 1000.

Mean of estimates

π π̂M θ̂M λ̂M

0.05 0.0879 0.3904 1.9935
0.10 0.1246 0.3604 1.9961
0.20 0.2031 0.3447 2.0026
0.30 0.3018 0.3168 2.0053
0.40 0.4021 0.3097 2.0038

TABLE 2. Mean of estimates based on 1000 repetitions when λ = 0.2, θ = 0.4
and n1 = n2 = 2000.

Mean of estimates

π π̂M θ̂M λ̂M

0.05 0.0705 0.4559 1.9967
0.10 0.1099 0.4381 1.9976
0.20 0.2029 0.4236 2.0002
0.30 0.3011 0.4119 1.9988
0.40 0.4017 0.4071 2.0013

Acknowledgments: The work of the first author was supported by the
Research Fund of the Project UGC/FDS14/P06/17.
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Abstract: Solar flares and other space weather events can be harmful for life and
infrastructure on earth or in near-earth orbit, therefore modelling such extreme
phenomena is vitally important to estimate the frequency and probability of their
occurrence. We employ extreme value theory (EVT) to model extreme solar flare
events, analysing X-ray flux strengths from NOAA/SWPC [NOAA (2017)]. The
return levels for Carrington or Halloween like events are calculated, estimating
similar events happening every 110 and 38 years respectively.
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1 Introduction

Solar flares can be hazardous to human activities and the scientific commu-
nity is faced with a number of such phenomena of great variability [Riley et
al. (2017)]. A probabilistic analysis of these events is a top priority for the
space weather agenda as they can adversely affect geopositional systems
and telecommunications [Lanzerotti (2007)] and cause severe power cuts.
A report provided by the National Research Council [National Research
Council (2008)] states that a Carrington-like event [Carrington (1859)] is
considered to be a “trillion-dollar” event that could destroy any national
power grid and cause disruption in the power supply for more than a year.

To forecast events of interest to human activity we study the tail of the dis-
tribution of solar flares which describes extreme events like the Carrington
event of 1859 or the “Halloween” storm of 2003. It has previously been as-
sumed that the tail of the distribution of flare strengths x follows a power
law [Riley (2012), Lu and Hamilton (1991)] or a lognormal distribution

This paper was published as a part of the proceedings of the 33rd Inter-
national Workshop on Statistical Modelling (IWSM), University of Bristol, UK,
16-20 July 2018. The copyright remains with the author(s). Permission to repro-
duce or extract any parts of this abstract should be requested from the author(s).
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[Riley et al. (2017)]; however it is believed that a power law distribution
overpredicts extreme events and their occurrence [Parrott (2015)].

Here we employ Extreme Value Theory (EVT) to estimate the probability
of extreme solar flares. Our main result is that a Carrington-like event (45
±5 Wm−2) [Cliver and Dietrich (2013)] is expected approximately once
every 110 years and a Halloween-like event (X35 ± 5 Wm−2) [Cliver and
Dietrich (2013)] approximately once every 38 years. These are in good
agreement with the frequencies of occurrence in the next solar cycle as pre-
dicted by the National Oceanic and Atmospheric Administration (NOAA).

2 Extreme Value Theory (EVT)

Extreme value theory (EVT) utilises asymptotic analyses for the founda-
tion of models of stochastic processes of unusually large or small intensity
events [Coles (2001)]. The possible asymptotic distributions are universal,
independent of parent (or true) distributions describing the full process and
thus reduce the necessity of making a priori assumptions.

Here we use the threshold excesses approach where all observations greater
than some high threshold are deemed extreme. In this approach, for X1, X2,
...Xn a sequence of i.i.d random variables and u a suitably large threshold
parameter, the distribution of Y = X − u conditional on X > u that
models the tail of the data is a Generalised Pareto Distribution (GPD)
[Coles (2001), Leadbetter et al. (1983)]:

H(y) = P(Y 6 y|Y > 0) = 1−
(

1 +
ξy

σ̃

)−1/ξ

(1)

defined on {y : y > 0 and (1 + ξy/σ̃) > 0}, with ξ, σ̃ the shape and scale
parameter of the distribution respectively. Both parameters in this work
are estimated using Maximum Likelihood Estimation (MLE). The shape
parameter determines the tail’s qualitative behaviour with ξ > 0 yielding
the Pareto CDF (“heavy” tail), ξ < 0 yielding the Beta CDF (bounded
tail) and the limiting case ξ → 0 giving the exponential CDF (“light” tail).

3 Data and results

The data used in this study were X-ray fluxes spanning a period of 43 years
from November 1975 to October 2017 extracted from the SWPC/NOAA
website and we analysed the peak X-ray flux of each solar flare event as mea-
sured by the Geostationary Operational Environmental Satellite (GOES)
spacecrafts. To get true X-ray flux measurements the data had to be di-
vided by 0.7 to undo a scaling applied by NOAA for consistency and long
term continuity [Machol and Viereck (2016)]. It is important to note here
that consecutive solar flare events can be dependent as the same process
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can generate events of smaller intensity but still of sufficiently high sever-
ity to be considered as extreme. Such temporal dependence is often treated
by the use of the conventional method of “Peaks-Over-Threshold” (POT);
however it has been shown in [Fawcett and Walshaw (2007)] that this tech-
nique can lead to systematic and substantial bias in the parameter and
return levels estimates. Instead, Fawcett and Walshaw suggest the use of
all threshold exceedances. To reduce the dependence in our analysis we use
only the peak X-ray flux of each event, thus cutting out any background
noise or events that have been recorded multiple times and focusing on the
extremes that have been proven to be the most destructive for instruments
and earth-based activities. To support the claim of independence of these
flux peaks we note that the partial autocorrelation function at lag 1 equals
0.049. Secondly, the estimated extremal index of the data which quanti-
fies dependence of recorded events – as estimated by the runs declustering
method [Gilleland and Katz (2016)] – was found to be θ ≈ 1, which verifies
that EVT can safely be applied. Based upon residual life plots and sta-
bility of MLE estimates we found that an appropriate threshold ensuring
minimal bias was u = 5 × 10−4Wm−2, an X5 flare, giving a total of 93
exceedances i.e. 93 flares are greater than X5 in our dataset.

Numerical maximisation provides MLE and standard errors for the distri-
bution parameters as: σ̂ = 5× 10−4 ± 0.2× 10−7 and ξ̂ = 0.12± 0.09. The
estimate of ξ suggests an unbounded distribution (ξ > 0) and the evidence
is reasonably strong as the 95% profile likelihood confidence interval (C.I.)

is almost exclusively in the positive domain with ξ̂ ∈ (−0.017, 0.3589). The
validity of the model is shown in Figure 1. The log-log plot indicates that
our model predicts extreme events accurately whilst the expected frequen-
cies are seen to match NOAA’s estimates fairly well.

FIGURE 1. Empirical and predicted probabilities of threshold exceedances on a
log-log scale. The second plot shows the expected frequency of extreme events
which closely match NOAA’s predictions.

It has previously been suggested that solar seasonality affects the frequency
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and the extremity of solar flare events. In our work, seasonality in the data
was identified via the discrete Fourier transform and was subtracted from
the data. The threshold excesses analysis was then repeated; however it was
found that the effects of seasonality were negligible with respect to extreme
events, as the estimates of the distribution parameters were compatible in
both cases within confidence intervals.

The model can further be used to estimate the strengths of extreme flares
expected in a given period – this is provided by so-called return levels.
The N-year return level zN is exceeded by the annual maximum in any
particular year with probability 1/N and from (1) is easily verified to be

zN = u+
σ

ξ

[
(Nnyζu)ξ − 1

]
, (2)

where ny is the number of observations per year, ζu = P(X > u) which is
estimated empirically, and ξ is the estimated shape parameter. Using the
return levels we can estimate the expected waiting time for Carrington-like
events and their 95% confidence intervals. These can be found in Table 1
and are illustrated in Figure 2 (note that caution is required for return levels
corresponding to extreme extrapolation). The return levels’ estimates in
Table 1 are provided with their confidence intervals which were constructed
via the method of profile likelihood. Although these are wider than the
normal approximation confidence intervals, they are advisable for return
levels as they account for the severe asymmetry of the likelihood surface
very often observed and thus afford better accuracy.

FIGURE 2. Return levels of threshold exceedances. Note an X5 flare, say, means
a flux of 5 × 10−4Wm−2. A “Halloween” event (X35) is a one-in-38 years event
and a Carrington event (X45) is a one-in-110 years event.

According to the above result the GOES saturation level of X17 (at which
the GOES system shuts down and stops recording any events and data as
they are destructive for its operational system) is expected to be exceeded
on average once in the next 3.5 years. A Carrington-like event (X45) is a
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TABLE 1. Estimates and 95% C.I. of several return levels.
Return level Estimate C.I.

3.5-year Saturation (X17) (X14.5, X20.5)
11-year X24.5 (X20.5, X35.5)

20-year X29.5 (X23.5, X47.5)
38-year Halloween (X35) (X26.5, X65)
50-year X37.5 (X27.5, X74)

100-year X44 (X30.5, X103)
110-year Carrington (X45) (X31, X108)
150-year X50 (X36, X125)

once in 110-year event and a “Halloween-like” event (X35) is a one in 38-
years event. The probabilities of these latter events happening in the next
decade are 9% and 23.8% respectively. The former is a good improvement
when compared to the 12% estimate provided by [Riley (2012)].

4 Conclusions

We argue that EVT is a more rigours framework for analysing extreme
events that provides a better basis for extrapolation to levels not yet ob-
served; we have showcased that our predictions are consistent with the ones
provided by NOAA. A novelty of our work is the study of solar seasonality
– we have found that its effect is negligible with respect to extreme events.

Our model fits the empirical data very well and we provide “worst-case sce-
nario” results (upper bounds of confidence intervals) for some important
return levels. It is predicted that the next saturation event of the GOES
system will be observed in the next 3.5 years whereas more severe events
such as the Carrington and the Halloween are expected to appear once
every 110 and 38 years respectively. The probability of these events hap-
pening in the next decade is 9% and 23.8% respectively which refines the
predictions provided in [Riley (2012)]. The estimates of return levels are
provided with more realistic confidence intervals which are evaluated using
the appropriate profile likelihood functions which account for the severe
asymmetry of the likelihood surface; these are important and their upper
bounds should be reported carefully when it comes to protecting life as well
as telecommunications and power grids to reduce or avoid the devastating
damage that extreme solar flares can cause.

EVT is an excellent tool to describe the tail of the distribution of solar flares
and it is expected that the estimates of the GPD will approach the true
values as more data are collected. The return level predictions we report in
this work can inform the preparation of earth and near-earth based devices
to handle worse case scenarios that likely to be encountered.
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Abstract: In traditional brick-and-mortar retailing, information on customer
demand typically results from point-of-sale data. These data are censored, and
hence biased, due to stock-outs affecting the individual purchase. In contrast,
e-retailing allows for the observation of customer preferences before stock-out in-
formation becomes known to the buyer and, therefore, yields uncensored demand
data. Moreover, in e-grocery the customer selects a future delivery time slot so
that future demand is partly known to the retailer at the replenishment decision
time.
Considering data from a German e-grocery retailer, in this case study we discuss
demand forecasting in e-grocery, making use of the corresponding new types of
data that are not available in traditional retailing. Since underage and overage
costs are usually asymmetric, we seek a suitable model for the entire demand
distribution, rather than point forecasts only, to minimize the costs. Thus, we
propose the application of Generalized Additive Models for Location, Scale and
Shape (GAMLSS), which allow a flexible selection of distributions for the de-
mand, and also a flexible modeling of covariate effects on any of the distributional
parameters. As benchmark models we consider linear regression, random forests,
quantile regression and quantile regression forests. The models are evaluated by
comparing their out-of-sample forecasting error for varying levels of asymmetry
in the costs. For each stock keeping unit (SKU) that we consider, we find that
models from the GAMLSS class outperform the benchmark models.
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1 Exploratory analysis of the e-grocery data

In the following, we explore the e-grocery data available in order to mo-
tivate the statistical models considered below. To illustrate some of the
key patterns, Figure 1 displays the relationship between selected explana-
tory variables (features) and the response variable, realized demand, for
the stock keeping unit (SKU) grapes within the demand period September
2015 to August 2017.
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FIGURE 1. Exploratory data analysis for the e-grocery case study data.

We find, inter alia, the following patterns:

1. Nonlinearity

Figure 1(a) shows the relationship between demand known at the time
of the replenishment decision and realized demand. Realized demand
equals or exceeds known demand for each observation. For relatively
low known demand, i.e. below 150 units, the size of additional demand
occurring during the replenishment period is relatively high compared
to situations where known demand is already high, i.e. above 150
units. This indicates that the functional relationship between realized
demand and known demand is nonlinear.

2. Heteroscedasticity

Figure 1(b) relates the realized demand to the median demand of the
same weekday in the previous month, and shows that the variance in
demand increases with increasing values of this feature.
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3. Skewness

Figure 1(c) shows positive skewness in the distribution of the realized
demand, with the degree of skewness varying across different prices.
The upper whisker and the 0.75 quantile are farther from the median
than the 0.25 quantile and the lower whisker. This asymmetry in the
distributional shape increases with increasing price.

2 Distributional regression

2.1 Business problem

Inventory exceeding or falling short of customer demand generally causes
asymmetric monetary consequences. The value of these consequences de-
pends on SKU-specific criteria such as price, margin, customer expectation,
storage capacities, and depreciation. In retailing, underage cost are often
assumed to be higher than overage cost.
Our e-grocery retailer offers a significant number of perishable SKUs in the
product categories fruits and meat. The associated overage costs of such
SKUs include additional spoilage cost. Shelf life of these SKUs is restricted
by best-before dates. We hence assume that the customer demand and the
sales period are identical for the SKUs analyzed in the case study. In other
words, excess inventory cannot be sold in the following demand period and
thus generates spoilage.
Classical measures of forecasting accuracy are the Mean Average Error
(MAE) and the Mean Average Percentage Error (MAPE). With respect to
the underlying business problem of our e-grocery retailer, both metrics are
inadequate because they do not consider economic consequences in their
evaluation of the estimation quality. The MAE measure does not account
for the asymmetry of overage and underage cost. The MAPE punishes
relative deviations of slow moving and fast moving products equally.
To capture the asymmetric economic impact of absolute forecasting errors
for each demand period t, we introduce the total cost Ct resulting from
any potential mismatch between inventory level and realized demand. In
demand period t, each excess unit of inventory generates a cost of h, while
each unit that we fall short of customer demand generates a cost of b.
Furthermore, we use Dt to denote the stochastic customer demand. We
then aim at minimizing the expected total cost,

E[Ct(yt)] = hE(yt −Dt)
+ + bE(Dt − yt)+,

with respect to the inventory level at the beginning of the demand period,
yt. The optimal yt defines the corresponding replenishment order quantity
of the retailer for period t. For single and independent demand periods,
the newsvendor problem provides the solution to the optimization problem
above (Zipkin, 2000). Specifically, we suppose that the values for b and
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h are defined via assessment of the retailer. The ratio b/(b + h) equals
the optimal demand quantile given b and h. It can be interpreted as the
inventory service level selected by the retailer. The optimal inventory level
is then obtained as

y∗t = argmin
yt

E[Ct(yt)] = F−1
t

(
b/(b+ h)

)
, (1)

where Ft is the (true) cumulative distribution function of the demand dis-
tribution in period t. In practice, the optimal solution to the newsven-
dor problem given in (1) is not available since the c.d.f. Ft describing the
stochastic demand is unknown. However, we can use data collected before
time t to statistically model realized demand as a function of features (e.g.
known demand at the time of the replenishment order), and subsequently
predict demand at time t using F̂t as obtained under the model.

2.2 Feature engineering

For all models, the demand distribution Ft is estimated using features.
Feature engineering describes the process of generating suitable features
from data. Both the general pattern of the demand distribution as well
as any time series effects are taken into account by considering historic
demand quantiles (5%, 50% and 95%), then building corresponding features
using data from a) the previous quarter, b) the previous month, and c)
the previous two weeks. After feature engineering, the data set contains 12
features, including also price and known demand as extracted directly from
the raw data.

2.3 GAMLSS

Given the complex patterns found in the data, we propose to use Gener-
alized Additive Models for Location, Scale and Shape (GAMLSS), as they
allow a flexible selection of distributions for the demand, and also a flexible
modeling of covariate effects on any of the distributional parameters (Rigby
and Stasinopoulos, 2005). For our case study, we implemented the normal
(NO), gamma (GA), Poisson (PO) and negative binomial (NBI) distribu-
tions as these are established in inventory management (see for example
Silver and Peterson, 1985, and Ramaekers and Janssens, 2008). We imple-
ment a P-spline smoother to account for potential nonlinear relationships
between features and realized demand.
Feature selection using component-wise gradient boosting, as described in
Hofner et al. (2016), in our case study did not improve the out-of-sample
forecast accuracy, such that we eventually trained all models using the
complete feature set.
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2.4 Benchmark models

Based on the existing literature on distributional regression (e.g. Koenker
and Hallock, 2001, Meinshausen, 2006), the benchmark models we consider
are linear regression (LM), random forests (RF), quantile regression (QR),
and quantile regression forests (QRF). We select the same distributions
for random forests that we applied also for GAMLSS (i.e. normal, gamma,
Poisson and negative binomial).

2.5 Model training and forecasting

Our data set contains data for the period September 2015 to August 2017
from six different e-grocery fulfillment center. We split the data into a
training data set (September 2015 to August 2016) and a validation data
set (September 2016 to August 2017). In the training process, we move
forward in time for model training and forecasting. For example, we train
the year August 2016 to July 2017 to forecast August 2017.

3 Results

For each demand period t and each of the models considered, we obtain
an estimate F̂t for the demand distribution Ft, which we apply to derive
yt for any given demand quantile. In the validation period September 2016
to August 2017, we then calculate the total costs that occur under the yt
obtained:

Ct(yt) = h(yt − dt)+ + b(dt − yt)+.

We specify the costs b and h such that the ratio b/(b + h) equals the
demand quantile at which we want to compare the performance of the
various models considered. As an example, we specify b = 4 and h = 1 when
evaluating the models for the target quantile 0.8. For each demand quantile
selected, we estimate the absolute total costs by the average costs of all
demand periods for the six e-grocery fulfillment center. As the absolute
total costs of SKUs depend on overall demand, we standardize the costs by
calculating the ratio to realized demand.
Figure 2 showcases example results for the SKU grapes, displaying relative
total costs as a function of the demand quantiles considered. Note that the
demand quantiles 0.8 to 0.99 are the most relevant quantiles in retail prac-
tice. For clarity of presentation, the plot shows only the best-performing
models.
For each SKU that we consider, we find that models from the GAMLSS
class outperform the benchmark models, with the Poisson distribution
yielding the overall lowest out-of-sample costs. The superiority of the Pois-
son distribution increases with an increase in the selected demand quantile
of the demand distribution. In addition, we find that for all models the
total cost is a convex function of the demand distribution’s quantile.
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FIGURE 2. Relative total costs for demand quantiles 0.01 to 0.99.
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Abstract: We investigated the diagnostic of statistical interaction in the case of
non-proportionality in hazards in one of the covariates involved in the interaction
effect during the Cox regression model development process. We generated right-
censored survival data using simulations with different scenarios that involved
different values for the coefficient of the interaction term and the time-dependent
term in Cox regression models. We evaluated and compared the empirical power
of the local chi-square test for regression coefficient of statistical interaction in
the different simulation scenarios for the models with and without proportional-
ity in hazards assumption satisfied. The results of the analysis of the simulated
data suggested that in the incorrectly specified Cox regression model due to a
non-proportionality in hazards in a covariate, the identification of a statistical in-
teraction with the same covariate, in some cases, required more statistical power.
We recommend that the evaluation of the interaction effect in Cox regression
model to be performed before and after testing and if necessary correcting for
proportionality in hazards.

Keywords: Cox regression model; Proportionality in hazards; Simulation; Sta-
tistical interaction; Effect modification.

1 Introduction

Regression analysis is a widely used powerful tool in epidemiological and
medical research to investigate associations between a specific exposure and
an outcome. Correctly specified regression models can provide reliable pa-
rameter estimates for the regression coefficient of each of the variables in

This paper was published as a part of the proceedings of the 33rd Inter-
national Workshop on Statistical Modelling (IWSM), University of Bristol, UK,
16-20 July 2018. The copyright remains with the author(s). Permission to repro-
duce or extract any parts of this abstract should be requested from the author(s).
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the model. This might have a direct impact as to how a researcher inter-
prets the data, answers the study questions, and in some instances, makes
important public health decisions (Greenland et al., 1994). Misspecified
non-additive models with no interaction term result in biased regression
coefficient estimates and ultimately erroneous interpretations (Vatcheva et
al., 2016). Common methods for assessing statistical interactions are test-
ing the product term of two or more variables included in the regression
model or conducting the log-likelihood ratio test for the nested models, with
and without interaction term. The Cox proportional hazards regression is a
commonly used semi-parametric statistical method in epidemiological and
medical research when analyzing time-to-event data for investigating the
association between the survival time of patients and one or more pre-
dictor variables (Cox, 1972). Performing a proportional hazards regression
analysis of survival data in applied settings requires a number of critical
decisions and steps. Some of the major steps are: selection of potential pre-
dictors and confounders and fitting the main effect model, examination of
the scale of the continuous variables; testing for statistical interaction and
fitting the preliminary model; and selection of the final model after per-
forming checking for adherence to the key model assumptions, diagnostics
for influential observations, and testing for overall goodness-of-fit (Harrel
et al., 1996; Hosmer et al., 2008). A key assumption of the Cox proportional
hazards regression model is that the hazard ratio is constant over time for
each of the covariates included in the model. The aim of this study was
to investigate the practice of evaluation of interaction effect in the case of
non-proportionality in hazards in one of the covariates involved in the in-
teraction effect during the Cox regression model development process using
simulated epidemiological data.

2 Statistical Methods

2.1 Data Generation

We generated right-censored survival data from a fully specified Cox regres-
sion model h (t|x) = h0(t)exp(β1x1 + β2x2 + β3x1x2+ β4x2log(t)), where
h(t|x) is the hazard rate at time t for an individual with risk vector x; h0(t)
is the baseline hazard; x1 and x2 are two predictor variables that had an
interactive effect and a violation in the proportional hazard assumptions in
variable x2; and β1, β2, β3, and β4 are the regression parameters. We con-
sidered the following simulation scenarios where we varied the magnitude
of interaction effect and the magnitude of deviation from proportionality
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in hazards:

h(t|x) = h0(t)exp(2x1 + x2 + 0.5x1x2 + x2log(t)), (1)

h(t|x) = h0(t)exp(2x1 + x2 + 1x1x2 + x2log(t)), (2)

h(t|x) = h0(t)exp(2x1 + x2 + 1.5x1x2 + x2log(t)), (3)

h(t|x) = h0(t)exp(2x1 + x2 + 1.5x1x2 + 1.5x2log(t)). (4)

Based on previous studies (Vatheva et al., 2015; Vatcheva et al., 2016), the
pre-specified continuous variable x1 was generated from normal distribution
with mean 6.4 and variance 2.25 and the pre-specified binary variable x2

was generated from Bernoulli distribution with probability of success p =
0.5. Baseline hazard rate was chosen so that more than 30% of the subjects
experience the event (Vatcheva et al., 2016). For each of the scenarios 1000
datasets with sample sizes of 600 were generated. All simulations were
conducted with Stata 12 using survsim module (Crowther et al., 2011).

2.2 Data Analysis

By using the simulated data under each of the simulation scenarios, Cox
regression models with an interaction (correct model) and without an in-
teraction term (incorrect model) were fitted. In each of the cases we fitted
two models: with non-proportionality in hazards in variable x2 and with
stratification by variable x2 to correct for non-proportionality in hazards
in variable x2. First, we obtained the vector of the p-values correspond-
ing to the local chi-square test statistic of the coefficient estimates of the
product term x1x2 in the interactive models across the 1000 repetitions.
We calculated the percentage of the p-values that were less than the priory
defined probability of Type I error α = 0.05. This percentage was our em-
pirical power, which is the empirical probability to reject an incorrect null
hypothesis that the coefficient estimates of the product term x1x2 is zero.
We evaluated and compared the power of the test for statistical interac-
tion x1x2 in the different simulation scenarios between the models with and
without proportionality in hazards in variable x2. In addition, we performed
and evaluated the power of Therneu-Grambsuch non-proportionality test
(Therneau et al., 2000) for both correct and misspecified models due to
exclusion of the interaction term and non-proportionality in hazards using
Stata 15.1 phtest command. All other statistical analyses were performed
using SAS 9.4. All statistical testing were two-sided and performed at sig-
nificance level α = 0.05.

3 Results

The results from the analysis of the simulated data for the empirical power
to detect a significant interaction effect at a significance level α = 0.05
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based on various simulation scenarios are shown in Figure 1. The empirical
power was compared to the recommended 80% power (Cohen, 1988), which
is commonly used in study design for detecting an effect when there is an
effect to be detected. Recall that we had generated our data using fully
specified Cox regression model in a way that there is non-zero interaction
effect between variables x1 and x2. In the case of non-proportionality in
hazards in variable x2 and simulation scenario (3) with a regression coeffi-
cient of the interaction term greater than the magnitude of the regression
coefficient of the time-dependent term, the empirical power of the local chi-
square test for the coefficient estimates of the product term x1x2 was 21.3%
(Figure 1, scenario(3)). To further investigate this effect we simulated addi-
tional data with Model 3 by increasing the sample size and the event rate.
When the sample size was increased from 600 to 2000, the empirical power
slightly increased to 45% (Figure 1, scenario (3a)). It is well known that
the power of Cox regression model is driven by the number of the events,
rather than the number of subject. When the event rate was increased to
77% the empirical power increased to 68.2% (Figure 1, scenario (3b)). In
simulation scenario (4) where the magnitude of the generated coefficient of
time-dependent term was increased to 1.5, the empirical power of the local
chi-square test for the coefficient estimates of the product term x1x2 was
90.2%.

FIGURE 1. Empirical power of detecting non-zero interaction effect in various
simulation scenarios.

Table 1 presents the results from the power analysis of Therneu-Grambsuch
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non-proportionality test. In all of the simulation scenarios the test per-
formed better before the inclusion of the interaction term in the models. De-
spite that the Therneu-Grambsuch non-proportionality test may yield false
positive when the model is misspecified (Therneau et al., 2000; Keele L.,
2010), the test had more than 80% power to detect the non-proportionality
in hazards in variable x2 in the misspecified models fitted in simulation sce-
narios (1), (2) and (4)(Table 1). The inclusion of the interaction term in
the models reduced the power of the test for non-proportionality in hazards
in variable x2 to as high as 50% (Table 1). After conducting Cox propor-
tional hazard regression with stratification by variable x2 to correct for non-
proportionality in hazards in variable x2, the power of detecting non-zero
interaction effect in all simulation scenarios was 100%. Therneu-Grambsuch
test accurately detected that the non-proportionality in hazards in variable
x2 was corrected.

TABLE 1. Empirical power (%) of Therneu-Grambsuch non-proportionality test
in various simulation scenarios.

Model 1 Model 2

Variable Misspecified Correct Misspecified Correct

x1 4 13.5 3 13.7
x2 81.9 28.9 97.6 37.2
x1x2 21.1 26.5
Global Test 92.7 60.7 95.3 54.2

Model 3 Model 4

Variable Misspecified Correct Misspecified Correct

x1 7.6 10.6 3.5 24.5
x2 46.4 35.9 99.4 48.8
x1x2 28.9 36.1
Global Test 65.2 51.1 99.2 76.6

4 Conclusions

The results of the analysis of the simulated data suggested that in the incor-
rectly specified Cox regression model due to non-proportionality in hazards
in a covariate, the identification of a statistical interaction with the same co-
variate, in some cases, required more statistical power. This findings were in
the case when the magnitude of the interaction term coefficient was greater
than the magnitude of coefficient of the term creating non-proportionality.
Previous research proposing Therneu-Grambsuch non-proportionality test
as a diagnostic strategy for Cox models (Keele, L., 2010) reported that
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correcting the model due to interactions and other model misspecifications
must be done prior testing for non-proportional hazards. We recommend
that during the Cox regression model development process, the statistical
testing for interaction effect need to be performed before and after testing
and correcting for the proportional hazards assumption.
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Abstract: This paper proposes a nonparametric Bayesian clustering model that
seeks to identify spatially contiguous clusters using data recorded over space and
time. This approach utilises a modified non-sequential distance dependent Chi-
nese restaurant process (ddCRP) to model dependencies arising from both space
and network connectivity in an undirected graph and we also define a spatio-
temporal precision matrix to fully account for spatial and temporal constraints
within individual clusters. The method employs a Metropolis within Gibbs sam-
pler to fully explore all possible partition structures and the developed algorithm
is illustrated by an application to house prices recorded for non-overlapping areal
units in England from 1995 to 2016.
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1 Introduction

Spatial clustering methods applied to spatio-temporal data are employed
to identify spatially contiguous homogeneous regions and serve as an im-
portant exploratory tool towards understanding location based differences
over time. We propose a novel nonparametric Bayesian clustering algo-
rithm that is capable of determining spatially connected clusters using
non-exchangeable data. This holistic approach determines the number of
clusters in a data-driven manner from observed data and incorporates spa-
tial and temporal dependencies within individual identified clusters. This
clustering approach is primarily motivated by temporal data for different
locations in space such that there is a unique observation for every space
and time combination.
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2 Method

Let a group of objects be arranged as an undirected graph such that neigh-
bouring objects are connected and a time series of observations are available
for each object. Examples include sensors spread over space (such as occu-
pancy observations recorded over six hours by sensors in a road network) or
areal unit data (such as average house prices recorded over twenty years for
each local authority in England). A cluster is composed of a set of connected
objects that have no links to objects in the rest of the undirected graph. In
a flexible Bayesian clustering approach, a prior enforces a distinct partition-
ing of the graph and we use a modified non-sequential distance dependent
Chinese restaurant process (ddCRP) to account for non-exchangeable data.
The classical Chinese restaurant process (CRP) suggests a generative pro-
cess where a new customer i that enters the restaurant is allocated to an
existing table depending on the number of customers already present and
is allocated to a new table with probability α. The CRP is described using
‘culinary’ metaphors and customers seated at a table in a restaurant corre-
spond to objects allocated to a cluster in a graph. An alternative generative
model for the classical CRP is based on customers who choose to sit with
another customer rather than at a table. The classical CRP is obtained if
a customer chooses an already seated customer as their ‘friend’ with prob-
ability proportional to 1 and chooses themselves as their own friend with
probability proportional to α. This is a special case known as the sequen-
tial CRP since customers cannot choose future customers as their friends.
In a sequential CRP, a new cluster is formed when a customer chooses no
friend and so the parameter α allows for effective control of the number of
clusters. We will see that this does not hold for a non-sequential CRP in
which the parameter α only poses limited control over the number of clus-
ters. In a distance dependent Chinese restaurant process (ddCRP) [Blei and
Frazier, 2011], the probability of a customer choosing another customer as
their friend depends on the distance between them. If the objects are ar-
ranged on a neighbourhood graph, a suitable model is to restrict customers
to choose only one of their neighbours as a friend, effectively making the
distance binary. Figure 1 shows two toy examples of such CRPs. Figure
1(a) shows a sequential process where customers can only choose neigh-
bours with a lower index (such as 4  3 ) or themselves as their friend.
Figure 1(b) shows a non-sequential process, in which customers can also
choose neighbours with a higher index. As one can see from the figure,
new clusters in a non-sequential ddCRP are formed by either self links or
redundant links which create cycles (such as a cycle formed by 3  4 and
4  3 ). Unless the parameter α also controls the creation of cycles, it
will not be effective at controlling the number of clusters. This is especially
problematic in the neighbourhood-based model, where customers have a
very limited choice of potential friends so cycles are very likely. We thus
propose a modification of the ddCRP that assigns a probability of α not
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only to a self link but also to redundant links that lead to a cycle.

FIGURE 1. Group of objects arranged as a network

The distribution of the ith customer assignment ci being equivalent to
customer j is defined as:

p(ci = j) ∝





α if i = j or j  i or a cycle is formed

h(dij) = 1 if i ∼ j
h(dij) = 0 if i � j

(1)

The probability of the partition structure (composed of three clusters) be-
ing formed within the network in Figure 1(b) is αnL = α3, where nL is the
number of clusters formed by cycles and self links.
The likelihood function defines a product over the probabilities of observa-
tions at identified clusters and we assume that the observations recorded
over time for each object follows a Gaussian distribution. In order to be
able to fully account for the temporal and spatial dependencies within in-
dividual identified clusters, we define a spatio-temporal precision matrix
using a conditional auto-regressive (CAR) model over space and a first
order auto-regressive (AR-1) model over time. The presence of a unique
observation for every space-time combination enables the use of Kronecker
product tricks to improve computational efficiency. A cluster structure of
the network based on observed data is found by posterior inference and
a Metropolis within Gibbs sampler enables the space of all possible parti-
tions to be explored by joining and breaking up clusters in the network.
A general Gibbs sampler for the sequential ddCRP is described by Blei
and Frazier (2011) and the general case where cycles are possible is in-
troduced by Socher (2011). We propose a sampler for the non-sequential
ddCRP to accommodate spatial and network dependencies imposed by the
structure of the graph and where new clusters are formed by both cycles
and self links. Unlike samplers for a traditional CRP, the sampler for a
non-sequential ddCRP can efficiently move multiple objects in or out of
clusters in a single step because all linked objects in the network need to
be taken into account. Assuming that the cluster specific parameters can
be integrated out, the sampler for cluster allocation is defined such that
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P (ci = j | c−i) ∝
{
p(ci = j) p(yA,yB)

p(yA)p(yB) if link i j joins clusters A and B

p(ci = j) otherwise

3 Results

The developed clustering method is applied to average house price data
for small areas in England recorded by the Office for National Statistics
(ONS) from 1995 to 2016 for middle layer super output areas (MSOAs).
The algorithm is implemented to cluster house prices aggregated at differ-
ent unit levels including MSOA, the local authority, counties and regions
and Figure 2 represents a cluster structure across local authority units (n
= 326) in England. The clustering method identifies spatially contiguous
clusters that represent distinct temporal patterns of prices at different local
authority units across the network.

FIGURE 2. Cluster structure to describe differences in average house prices.

In future work we seek to extend the algorithm to generate dynamic clusters
that change in shape over time and to incorporate data from multiple
sources in order to identify meaningful relationships.
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Abstract: We focus on an ecological study where the aim is to investigate small
scale spatial processes within macroinvertebrate communities. We use mixed
models in a Bayesian framework and discuss the use of PC priors in this set-
ting. Preliminary results show presence of correlation within survey campaigns,
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1 Introduction

The distribution of organisms in natural communities is often spatially
structured and shows high degree of variability (Laini et al., 2014). Inves-
tigating factors affecting these communities is an important topic in com-
munity ecology and proper statistical tools are needed to disentangle the
effects of abiotic factors from those of biotic interactions. The motivating
example for this work regards the analysis of small scale spatial processes
within macroinvertebrate communities. Data were collected in six sampling
campaigns carried out in three different streams, tributaries of the Po River
(Northern Italy): Nure Stream, Parma Stream and Enza Stream. For each
river a sampling area was selected and sampled twice, once in summer and
once in winter. The spatial design for each station included fifty random
points aligned along several transects, see an example in Figure 1. At each
point, abundance of macroinvertebrates (response) and abiotic factors such
as flow velocity (V), water depth (P) and benthic organic matter (BOM)
were recorded.
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In recent years, the linear mixed model (LMM) framework has grown a lot
of attention for the analysis of ecological survey data (Zuur et al., 2009).
The reason lies in interpretability of the model components. The fixed part
includes the effects of observed abiotic factors (environmental covariates),
while the random effects account for sources of heterogeneity driven by
unobserved factors. Unobserved heterogeneity is usually interpreted as ei-
ther missing covariates or evidence for biotic processes taking place among
members of a given community.
In a Bayesian hierarchical framework for mixed models (Fong et al., 2010),
a major issue regards the choice of the prior for the precision (i.e. inverse
variance) of the random effects. Prior information on the scale of a precision
parameter is typically not available. To address this issue, Simpson et al.
(2017) proposed penalized complexity (PC) priors, which are defined on
the scale of the distance from a base model and then transferred to the
scale of the original parameter. For instance, for a Gaussian random effect
with zero mean and precision τ a natural base model is obtained as τ →∞,
which corresponds to no random effect. Following Simpson et al. (2017),
the PC prior for τ is a Gumbel type 2 distribution.
In this work, a LMM is used to understand the nature of residual structure
remaining after accounting for environmental factors. To this aim, we will
apply PC priors for correlation matrices discussed in section 6 of Simpson
et al. (2017).

FIGURE 1. Scheme of the sampling design: black dots represent the 50 points
inside the grid, with positions varying depending on sampling campaign.

2 Modelling unobserved heterogeneity with mixed
models and PC priors

Let yi,j be the log transformed abundance observed at replicate i = 1 : 50
from campaign j = 1 : 6, we assume the model

yi,j = xT
i,jβ + εi,j ; ε ∼ N (0, τ−1

ε R−1). (1)
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The environmental covariates x include the abiotic factors (V, P, BOM)
observed during each campaign. The residuals ε in (1) have correlation
matrix R−1 and precision τε. Any structure in the residuals can then be
modelled by specifying a suitable form for R. We use two alternatives for
R that correspond to two different assumptions on ε: the first assumes the
residuals are independent (i.e. R = I; iid case), while the second states
the residuals are independent between campaigns and exchangeable within
campaigns with correlation ρ (exch case). In the latter case, R = I6⊗C,
where ⊗ indicates the Kronecker product and C is a matrix containing
1 in the diagonal and ρ out of diagonal; note, this is also referred to as
compound symmetry and corresponds to the mixed model xT

i,jβ+ bj + εi,j ,
where bj is a random effect for campaign and εij are independent residuals.
In the iid case the prior π(ε) depends on the hyperparameter τε, while
in the exch case it depends on both τε and ρ. Regarding τε, we use the
Gumbel PC prior in both cases. Following Simpson et al. (2017) section 6,
we use the PC prior for the correlation parameter ρ defined on the distance
from an iid base model (i.e. ρ = 0). To complete the prior specification
we need to set the degree of penalty - applied to π(ε) - for deviating from
the iid base model π(ε|ρ = 0). This can be done through an intuitive user-
defined scaling approach: for instance, setting the prior median for ρ as
equal to 0.5, which means that 0.5 prior probability mass is assigned to
ρ < 0.5. This seems a sensible approach in general, as we will hardly have
any precise prior guess about ρ in practice.
Model (1) implementing the two priors was fitted in R-INLA (Rue et al.
2009). The posterior summaries (mean, lower and upper quantiles) for the
main model parameters are in Table 1. Environmental covariates show sig-
nificant effect on the abundance of macroinvertebrate and are broadly the
same in the two cases. Checking whether data shows any evidence of corre-
lation within campaigns is important, as that may suggest the presence of
intra-community processes driven by biotic factors. The hyperparameter ρ
is concentrated at around 0.42 (with credible interval from 0.26 to 0.58),
meaning that there is evidence for within campaign residual correlation. We
analyzed posterior credible intervals for the residuals ε across campaigns
and they do not show any clear pattern if the exchangeable prior is used,
whereas they look much more structured under the iid prior (figures not
shown here).

3 Concluding remarks

Mixed models represent a valuable toolbox for statistical modelling of eco-
logical survey data. The use of PC priors in a mixed model setting can
lead to advantages in terms of avoiding overfitting models and invariance
over reparametrization. The preliminary results discussed here show possi-
ble occurrence of biotic processes driving macroinvertebrate communities
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in the study area. Future work will investigate spatial structure in the resid-
uals, modelling small-scale variations along the transects. This would be a
further step into characterizing the nature of the biotic processes driving
natural communities.

TABLE 1. Posterior summaries for model (1), using iid and exchangeable prior.
In the last line, ρ is the within campaign correlation.

iid case exch case

0.025q mean 0.975q 0.025q mean 0.975q

(Intercept) 4.09 4.31 4.52 3.52 4.35 5.18
V 0.13 0.28 0.43 0.12 0.26 0.39
P -0.40 -0.27 -0.13 -0.34 -0.22 -0.09
BOM 0.37 0.57 0.77 0.32 0.50 0.68
τε 1.08 1.27 1.49 0.72 0.97 1.30
ρ 0.26 0.42 0.58
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Abstract: This paper concerns multiplicative model combination, which is a way
of combining probability models using a weighted multiplication and a subsequent
normalization. In particular, we focus on density estimation problems and we
define a density estimator, based on a suitable model combination, using a new
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simple application to the estimation of the precision matrix of a multivariate
Gaussian model is presented.
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1 Introduction

The main focus of the paper is density estimation and, in particular, the aim
is to estimate an unknown density function using a suitable combination
of basic density functions, which might correspond to simple probability
models describing particular features of the interest random phenomenon.
The problem of combining density functions, also termed model pooling
or combination of experts, is considered quite often in the machine learn-
ing and in the econometric literature (see, for example, Hinton, 2002, and
Geweke and Amisano, 2011).
Let us consider a continuous random vector Z = (Z1, . . . , ZK), with K ≥
1, having an unknown density function f(z), z ∈ RK , and a set P =
{pj(z; θj), j = 1, . . . , J} containing J ≥ 1 plausible density functions for
Z, where θj is a vector including the parameters of the j-th model. Let us
assume that a sample z1, . . . ,zn, with n ≥ 1, is available from Z. The aim
is to use the information given by the observed data in order to define a
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combination of the models in P to be considered as a useful surrogate for the
true density f(z). In particular, we consider multiplicative combinations of
densities defined as

fp(z;w, θ) = c(w, θ)−1
J∏

j=1

pj(z; θj)
wj , (1)

with w = (w1, . . . , wJ) a J-dimensional vector of non-negative weights,

θ = (θ1, . . . , θJ) and c(w, θ) =
∫
RK

∏J
j=1 pj(z; θj)

wjdz the normalizing
constant, supposed to be finite. We emphasize that in many applications
the computation of the normalizing constant c(w, θ) could be intractable
or very computationally demanding and this makes infeasible the use of
likelihood-based approaches for making inference on w (and possibly on θ).

2 A boosting-type algorithm for density estimation

The objective is to find a multiplicative density combination (1) to be
considered as a suitable estimator for the unknown density function f(z)
or, equivalently, to find an estimator for the unknown vector of weights
w. We assume that the density functions are twice differentiable and, to
simplify the presentation, that the model parameters θj , j = 1, . . . , J , are
known, and then omitted in the notation. The inferential procedure relies
on the following divergence, introduced by Hyvärinen (2005),

H(f, fp;w) =

∫

RK

||∇ log f(z)−∇fp(z;w)||2f(z) dz,

where ∇ g(z) = (∂g(z)/∂z1, · · · , ∂g(z)/∂zK) is the gradient and || · || the
Euclidean norm. This divergence is non-negative, it vanishes only when
f ≡ fp and, since it involves the gradient of the log-densities, it can be
computed without the knowledge of the normalizing constants of f(z) and
fp(z;w). Since it matches the scores, with respect to the vector z, it is also
referred to as the score matching loss. Under suitable regularity assump-
tions, Hyvärinen (2005) proved that minimizing H(f, fp;w) is equivalent
to minimizing the expected Hyvärinen score

SH(f, fp;w) =

∫

RK

[
24 log fp(z;w) + ||∇ log fp(z;w)||2

]
f(z) dz, (2)

where 4 g(z) =
∑K
k=1 ∂

2g(z)/∂z2
k is the Laplacian. This result holds for

continuous random vectors with support RK . Extensions to the case of
continuous, non-negative random vectors and to some particular discrete
random vectors may be found in Hyvärinen (2007).
The integral in (2) admits an empirical version, based on an average over
the observed sample z1, . . . ,zn, given by

ŜH(f, fp;w) =
1

n

n∑

i=1

[
24 log fp(zi;w) + ||∇ log fp(zi;w)||2

]
(3)
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and ŵ = minw∈RJ
+
ŜH(f, fp;w) defines the score matching estimator for w.

In order to solve this optimization problem, we consider a gradient boost-
ing algorithm (see, for example, Friedman, 2001), which can be viewed as
a simple variant of the coordinate descent method. More precisely, ŵ is
obtained by means of an iterative procedure where, chosen an initial value
ŵ(0) ∈ Ω, we repeat the updating step ŵ(r) = ŵ(r−1)+α(r) d(r), r = 1, 2, . . .,
until a stopping criterion is satisfied. The vector d(r) ∈ RJ indicates the
search direction and, for coordinate descent methods, it corresponds to a
vector eh with a one in position h ∈ {1, . . . , J} and zero in all other po-
sitions. The coordinate h for descent corresponds to that one giving the
largest component of the gradient vector in absolute value. Thus, at each
step, only the weight of the selected component density ph(z) is modified
in order to provide the maximal reduction in the loss function. Further-
more, α(r) specifies the step sized and it can be obtained by linear search.
Alternatively, a suitable constant step size may be defined: usually a fixed
quantity with a small absolute value and the sign chosen in order to satisfy
the descent condition.
This boosting-type algorithm is very simple and, although more advanced
algorithms could be considered in order to achieve better convergence
results, it can be surely convenient whenever the multiplicative mixture
model has a large number of components. Thus, it defines a regularization
procedure useful when the score matching approach is applied in high-
dimensional problems. Moreover, it can be readily extended to the case
where the component model parameters θ1, . . . , θJ are unknown (Vidoni,
2017).

3 Estimation of Gaussian precision matrices

We apply the boosting-type algorithm based on the Hyvärinen score for
estimating the precision matrix of a multivariate Gaussian distribution.
The precision matrix is defined as the inverse of the covariance matrix and,
when its dimension is large, the estimation problem could be challenging. It
is well-known that the precision matrix defines the conditional dependence
structure of Gaussian graph models and Gaussian Markov random fields.
Let Z be a K-dimensional random vector following a multivariate Gaussian
distribution with a null mean vector µ = 0 and a non-singular covariance
matrix Σ = (σrs). Given a sample zi = (zi1, . . . , ziK), i = 1, . . . , n, the
aim is to estimate the precision matrix Q = Σ−1 = (qrs). To this end we
consider a multiplicative mixture of K-variate Gaussian densities with a
null mean vector and a suitable symmetric precision matrix Qj = Qj(θ) =
(qj,rs(θ)), j = 1, . . . , J . Thus, using well-known properties of the Gaussian
distribution, we can conclude that the multiplicative mixture density (1)

corresponds to a Gaussian density with precision matrix QH =
∑J
j=1 wjQj .
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In this framework, we consider as objective function the empirical average
(3) given by

ŜH(f, fp; θ, w) =
1

n

n∑

i=1

K∑

k=1








J∑

j=1

wj

K∑

s=1

zisqj,ks(θ)





2

− 2
J∑

j=1

wjqj,kk(θ)


 .

Using the algorithm presented in Section 2, we find the estimates ŵ, θ̂
and then the estimate Q̂H =

∑J
j=1 ŵjQj(θ̂) for the unknown precision

matrix Q, provided that it is symmetric and positive-definite. Note that
Q̂H is defined as a linear combination of a set of simple precision matrices
Q̂j = Qj(θ̂), j = 1, . . . , J , giving a partial description of the conditional
covariance structure of the random vector Z.
The choice of this system of matrices Qj , j = 1, . . . , J , is crucial for the
effectiveness of the inferential procedure. For example, if we know that the
true Q is a band matrix, namely it is a sparse matrix with non-zero entries
confined to a diagonal band with unknown dimension, we may consider the
following J = K component matrices

Qj =




qj,11 0 · · · qj,1j 0 · · · 0

0 qj,22 0
. . . qj,2(j+1)

. . .
...

... 0 qj,33
. . .

. . . qj,3(j+2) 0

0
. . .

. . .
. . .

. . .
. . .

...

qj,j1 0
. . .

. . . qj,jj
. . . 0

... qj,(j+1)2

. . .
. . .

. . .
. . . 0

0 · · · . . . 0 · · · 0 qj,KK




,

j = 1, . . . , J , having the main diagonal and only two equal non-null, sym-
metric diagonals in K different positions. Whenever the conditional covari-
ance does not follows a band structure an alternative, more general system
of component precision matrices can be considered.
In order to guarantee identifiability in the objective function, we assume
that q1,rr = θr and qj;rr = 0, j = 2, . . . , J , r = 1, . . . ,K; furthermore, all
the non-null, off-diagonal elements of the matrices are considered as equal
to 1. Thus, matrix Q1 (with a fixed weight w1 = 1) is a diagonal matrix
defining the conditional precision of each marginal component of vector Z,
whereas the remaining matrices Qj , j = 2, . . . , J , specify the presence of
some specific non-null conditional correlations, whose values are defined
by the corresponding weights wj , j = 2, . . . , J . For example, the precision
matrix obtained from the system of component precision matrices outlined
before corresponds to
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QH =
J∑

j=1

wjQj =




θ1 w2 w3 · · · wK

w2 θ2 w2
. . . wK−1

w3 w2 θ3
. . .

...
...

. . .
. . .

. . . w2

wK wK−1 · · · w2 θK



.

Although, with the assumptions stated before, the component matrices
Qj , j = 2, . . . , J , present a null main diagonal, and they are expected to
be singular, the optimization procedure can be applied in the same way,
giving a useful estimated precision matrix Q̂H .
A simulation study concerning the simple situation of band matrices is pre-
sented and it shows that the boosting algorithm produces an estimator for
Q having better accuracy then the graphical lasso estimator (Mazumder
and Hastie, 2012) and the estimator obtained as the inverse of the sam-
ple covariance matrix. We consider 100 simulated samples of dimension
n = 100, 200, 500 from a K-variate Gaussian distribution with K = 20, hav-
ing a null mean vector and a band precision matrix Q with non-null entries
qkk = 2, k = 1, . . . ,K, qk(k−1) = q(k−1)k = −0.5, k = 2, . . . ,K, qk(k−2) =
q(k−2)k = 0.4, k = 3, . . . ,K, qk(k−3) = q(k−3)k = −0.3, k = 4, . . . ,K, and
qk(k−4) = q(k−4)k = 0.2, k = 5, . . . ,K. We aim at comparing the empirical

properties of the following estimators: Q̂H1, based on the boosting-type
algorithm assuming a band structure for the component precision matri-
ces, Q̂H2, based on the boosting-type algorithm assuming a more general
structure for the component precision matrices (Vidoni, 2017), Q̂GL, based
on the graphical lasso algorithm proposed by Mazumder and Hastie (2012)
and S−1, corresponding to the inverse of the sample covariance matrix.
We compare the alternative methods in terms of the Kullback-Leibler loss
between the true and the estimated Gaussian densities

KL = tr(Q−1Q̂)− log(|Q−1Q̂|)−K,

where tr(·) and | · | indicate, respectively, the trace and the determinant of
a matrix. Quantity KL measures how close the estimated Q̂ is to the true
Q and lower values indicate a better estimate, with KL = 0 if Q̂ = Q.
The sample estimates of KL, with the associate standard errors, are pre-
sented in Table 1. We underline that the estimators based on the boosting-
type algorithm and the Hyvärinen’s divergence exhibit a good performance.
In particular, Q̂H1 achieves definitely the best results, whereas the behav-
ior of Q̂H2 is quite similar to that of the lasso-type estimator Q̂GL in all
the experimental situations, excluding the case with n = 100. This can be
explained by recalling that Q̂H2 is defined without assuming a particular
structure for the system of component precision matrices and then it cor-
responds to the most general and less powerful estimator of this family.
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Finally, the inverse of the sample covariance matrix performs, as expected,
very poorly, in particular for n = 100, 200.

n Q̂H1 Q̂H2 Q̂GL S−1

100 0.405 1.775 1.303 3.067
(0.009) (0.025) (0.010) (0.043)

200 0.228 0.791 0.837 1.238
(0.006) (0.010) (0.008) (0.014)

500 0.123 0.363 0.360 0.447
(0.003) (0.004) (0.004) (0.005)

TABLE 1. Estimated Kullback-Leibler loss and standard errors (in brackets) for
the boosting-type estimator with band component precision matrices Q̂H1, the
boosting-type estimator based on general precision matrices Q̂H2, the graphi-
cal lasso estimator Q̂GL and the inverse of the sample covariance matrix S−1.
Simulated samples of dimension m = 100, 200, 500 from a K-variate Gaussian
distribution with K = 20, having a null mean vector and a band precision ma-
trix.
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Abstract: Survival analysis includes a wide variety of methods for analyzing
time-to-event data. One basic but important goal in survival analysis is the com-
parison of survival curves between groups. Several nonparametric methods have
been proposed in the literature to test for the equality of survival curves for cen-
sored data. When the null hypothesis of equality of curves is rejected, leading
to the clear conclusion that at least one curve is different, it can be interesting
to ascertain whether curves can be grouped or if all these curves are different
from each other. We present the R clustcurv package which allows determin-
ing groups with an automatic selection of their number. The applicability of the
proposed method is illustrated using real data.

Keywords: Log-rank Test; Multiple Survival Curves; Number of Groups; Sur-
vival Analysis

1 Introduction

Survival analysis includes a wide variety of methods for analyzing time-to-
event data. One basic but important goal in survival analysis is the com-
parison of survival curves between groups. For example, in an observational
survival study, one may be interested in comparing survival between indi-
viduals from different age groups, different genders, racial/ethnic groups,
geographic localization, etc.
Several nonparametric methods have been proposed in the literature to
test for the equality of survival curves for censored data. The log-rank or
Mantel-Haenszel test (Mantel, 1966) is the most well-known and widely
used to test the null hypothesis of no difference in survival between two or

This paper was published as a part of the proceedings of the 33rd Inter-
national Workshop on Statistical Modelling (IWSM), University of Bristol, UK,
16-20 July 2018. The copyright remains with the author(s). Permission to repro-
duce or extract any parts of this abstract should be requested from the author(s).
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more independent groups. An alternative test that is often used is the Peto
& Peto (1972) modification of the Gehan-Wilcoxon test (Gehan, 1965).
Though the aforementioned methods can be used to compare multiple sur-
vival curves, methods that can be used to determine groups among a series
of survival curves are not available, to the best of our knowledge. When the
log-rank test (or its analogous) is used to compare three or more survival
curves at once, the test reports a single p-value testing the null hypothesis
that all the samples come from populations with identical survival. If the
null hypothesis of equality of curves is rejected, then, this leads to the clear
conclusion that at least one curve is different. However, these methods can-
not be used to ascertain whether groups of curves can be performed or if
all these curves are different from each other.
One näıve approach would be to perform pairwise comparisons. However,
this approach would lead to a large number of comparisons (e.g. 7 groups
would lead to 21 pairwise comparisons). One could make it but without
the possibility of determining groups with similar survival curves. This
can be achieved with the pairwise survdiff of the package survminer

(Kassambara and Kosinski, 2017) which calculates pairwise comparisons
between group levels with corrections for multiple testing. Results for such a
test can tell us that all combinations are different, or just one pair. However,
as it was mentioned, when the number of curves increases so does the
difficult of interpretation.
According to this, the paper introduces clustcurv, a software application
for R which allows determining groups with an automatic selection of their
number based on k-means or k-medians algorithms (Villanueva et al., sub-
mitted). It describes the capabilities of the package using a real dataset.

2 The clustcurv package in practice

To illustrate our method we will use one real dataset. It comes from a large
clinical trial on Duke’s stage III patients, affected by colon cancer, that
underwent a curative surgery for colorectal cancer (Moertel et al., 1990).
This data set is freely available as part of the R package condSURV (Meira-
Machado and Sestelo, 2016). From the total of 929 patients, 452 died. For
each individual, an indicator of his/her final vital status (censored or not),
the survival time (time to death) from the entry of the patient in the
study (in days), and a covariate including the number of lymph nodes with
detectable cancer (grouped from 1 to ≥ 10 in the dataset colonCSm) were
used.

> devtools::install_github("noramvillanueva/clustcurv")

> library(clustcurv); library(condSURV)

> head(colonCSm)[1:2, ]

time status nodes

1 1521 1 5



200 Determining Groups in Multiple Survival Curves

2 3087 0 1

The estimated survival curves after splitting the data according to the num-
ber of nodes are shown in Figure 1 (upper panel). When we confront with
a dataset like this, with a categorical variable with a high number of levels,
maybe a good approximation could be to establish groups with the same
risk or survival probability. The unique option until now could be to use
first the log-rank test and then, if the result of the application of this test
is statistically significant, do a post hoc analysis like a pairwise compar-
ison. The p-value of the log-rank test is < 0.01 and the interpretation of
the resulting p-values of the pairwise comparison (not shown) becomes a
problem.

> survdiff(Surv(time, status) ~ factor(nodes), data = colonCSm)

Call:

survdiff(formula = Surv(time, status) ~ factor(nodes),

+ data = colonCSm)

N Observed Expected (O-E)^2/E (O-E)^2/V

factor(nodes)=1 274 94 151.93 22.0901 33.9249

factor(nodes)=2 194 74 102.87 8.1022 10.5979

factor(nodes)=3 125 61 62.56 0.0387 0.0453

factor(nodes)=4 84 43 38.26 0.5868 0.6434

factor(nodes)=5 46 34 17.06 16.8249 17.5428

factor(nodes)=6 43 27 16.43 6.8027 7.0736

factor(nodes)=7 38 25 15.41 5.9636 6.1880

factor(nodes)=8 23 18 7.22 16.0875 16.3765

factor(nodes)=9 20 14 8.05 4.3931 4.4795

factor(nodes)=10 62 49 19.21 46.2239 48.6066

Chisq= 129 on 9 degrees of freedom, p= 0

> survminer::pairwise_survdiff(Surv(time, status) ~ nodes,

+ data = colonCSm, p.adjust.method = "BH")

To solve it, we applied the proposed procedure. For a significance level of
0.05 and using the Cramér-von Mises type statistic, the null hypothesis
H0(1) is rejected (p-value of < 0.01) while the null hypothesis H0(2) is
accepted (p-value of 0.19). The assignment of the curves to the two groups
can be observed in Figure 1.

> res <- clustcurv_surv(time = colonCSm$time,

+ status = colonCSm$status, fac = colonCSm$nodes,

+ algorithm = "kmeans", nboot = 500, cluster = TRUE,

+ seed = 300716)

Checking 1 cluster...

Checking 2 clusters...

Finally, there are 2 clusters.
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> autoplot(res, groups_by_colour = TRUE, xlab = "Time (in days)")
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FIGURE 1. Estimated survival curves for each of the levels of the variable “nodes”
using the Kaplan-Meier estimator. A specific color is assigned for each curve
according to the group to which it belongs (in this case two groups, K = 2).
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Abstract: Frailty models are getting more and more popular in survival analysis.
These models have two advantages comparing with the fixed-effects model: One is
showing the effect of individual-specific and cluster-specific parameters, another is
preserving the Markov assumption in survival analysis. Here we fit a frailty model
to the cardiac allograft vasulopathy data, the results illustrate that it is better
than the fixed-effects model. Furthermore, we can explore different distributions
for the frailty for different transitions.
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1 Introduction

The multi-state model describes a process where individuals move among
a series of states over time. It is increasingly popular in a wide range of ap-
plications in biostatistics. For instance, breast cancer (Putter et al. 2006),
HIV (Gentleman et al. 1994), ageing (Rickayzen and Walsh 2002). Gener-
ally, if death is one of the state, the multi-state model can be seen as an
extention of survival analysis.
In most studies, covariate effects are fixed effects. These effects do not take
into account unobserved heterogeneity with respect to individual or group
level effects. In a multi-state model, there may be unobserved heterogeneity
with respect to the rate of moving from one state to another. In survival
analysis, such an effect on a rate is called a frailty. For example, different
moving rate of each individual between transitions as the individual-effect
frailty, and different groups of individuals with respect to hospital frailty
as the group-effect frailty.
Another contribution of adding frailty parameters in multi-state model
is to avoid violating the Markov assumption, which implies that future

This paper was published as a part of the proceedings of the 33rd Inter-
national Workshop on Statistical Modelling (IWSM), University of Bristol, UK,
16-20 July 2018. The copyright remains with the author(s). Permission to repro-
duce or extract any parts of this abstract should be requested from the author(s).
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states are only determined by the current states. It is known the transition
hazard may be affected by the duration in previous states, implying that the
future not only depends on current states but also the past. For example,
individuals who have been longer in disease states, are more likely to move
to death; see Putter and van Houwelingen (2015) for more details. It can
be addressed with fitting a frailty model, where frailties represents the
duration in former states.
In this study, we fit a frailty model to the cardiac allograft vasculopathy
data to explore the role of random-effect parameters in multi-state models.
Cardiac allograft vasculopathy (CAV) is a kind of disease, which limits
survival for cardiac transplant recipients. Sharples et al. (2003) defined it
by three living states, which are the grades of CAV at each time. Figure 1
shows the multi-state process. State 1 to 3 are defined by no CAV, moderate
CAV, severe CAV, respectively. State 4 is an absorbing state representing
dead. Here we use the data to define a progressive process defined by the
history of observed states, which results in transitions (1,2), (1,4), (2,3),
(2,4), (3,4).

FIGURE 1. Transitions in the four-state model for cardiac allograft vasculopathy
(CAV).

2 Method

2.1 Regression Model

For the fixed-effects model, the hazard function can be defined by regres-
sion. For transition (r, s), the hazard function is given by

hrs(t|x) = hrs.0(t) exp(β>rsx), (1)

where x is the vector of covariates, βrs is a parameter vector, hrs.0(t) is
the baseline hazard.
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For the random-effects model, the hazard function for individual i can be
defined by adding a frailty variable to equation (1).

hrs(t|brs.i,x) = hrs.0(t) exp(β>rsx+ brs.i), (2)

where brs.i is the frailty variable. Note that brs.i can be changed to bc for
a cluster-specific random effect. Here we discuss the normal distribution:
brs.i ∼ N(0, σ2

rs). In this study, the hazard regressions are defined with
different covariates in different transitions, which are displayed in Table 1.
In this table, t, bage, dage are represent years followed-up, baseline age and
doner age of individuals, respectively.

TABLE 1. The hazard function in each transition for CAV data

Transition Hazard Function, where bi ∼ N(0, σ2)

(1, 2) h12(t|bi,x) = exp(β12.0 + β12.1t+ β12.2bage+ β12.3dage+ bi)
(1, 4) h14(t|x) = exp(β14.0 + β14.2bage+ β14.3dage)
(2, 3) h23(t|bi,x) = exp(β23.0 + β23.3dage+ bi)
(2, 4) h24(t|x) = exp(β24.0 + β24.3dage)
(3, 4) h34(t|x) = exp(β34.0 + β34.3dage)

2.2 Likelihood Function

Estimating the model parameters can be undertaken by maximazing the
log-likelihood function. Under the Markov assumption, yij is the state for
individual i at time tij , the likelihood function of frailty model for individual
i is given by

Li(θ|y,x) = P (YJ = yJ , . . . , Y2 = y2|Y1 = y1,θ,x)

=

∫

Ωbi

P (YJ = yJ , . . . , Y2 = y2|Y1 = y1, θ, x, bi)f(bi)dbi

=





∫
Ωbi

(
J∏
j=2

P (Yj = yj |Y1 = y1, θ, x, bi))f(bi)dbi,

where yJ ∈ {1, 2, 3}
∫

Ωbi
(
J−1∏
j=2

P (Yj = yj |Y1 = y1, θ, x, bi))×

(
3∑
s=1

P (YJ = s|YJ−1 = yJ−1, θ, x)hs4(tJ−1|θ, x))f(bi)dbi,

where yJ is death

Thus, the likelihood function of all N individuals is given by multiplying
contributions:

L(θ|y,x) =

N∏

i=1

Li(θ|y,x).
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Maximizing the likelihood function can be undertaken through using a
general-purpose optimisation. Here we use the optimisation in software R.

3 Data Analysis

In this study, we fit both the fixed-effect model and the frailty model men-
tioned above, AIC of these two models are 3472.6 and 3470.4, respectively.
It represents that adding a frailty as a random-effect intercept in the hazard
model for transitions (1, 2) and (2, 3) will lead to an improvement of the
loglikelihood function. The estimation of the frailty variance is 0.539 with
a standard error 0.216. This illustrates that is worthwhile to distinguish
movers from stayers.

4 Conclusion

The aim of this study is to discuss whether the frailty model is a bit better
than the fixed-effects model. It is clear that the frailty model we fit there is
better. In the future, we can explore more types of frailty models, e.g., with
different distributions, for different transitions, and bivariate frailty mod-
els. Here we give an example of the frailty which follows a one-parameter
gamma distribution: Brs.i ∼ Gamma(φrs). The hazard function for indi-
vidual i can be defined as hrs(t|Brs.i,x) = hrs.0(t)Brs.i exp(β>rsx), where
Brs.i is the frailty variable.
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Abstract: This paper addresses the problem of fusing data from in-lake moni-
toring programmes with remote sensing data, through statistical downscaling. A
Bayesian hierarchical model is developed, in order to fuse the in-lake and remote
sensing data using spatially-varying coefficients. The model is applied to an ex-
ample dataset of log(chlorophyll-a) data for Lake Erie, one of the Great Lakes of
North America.
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1 Introduction and background

This work is motivated by the problem of fusing data from in-lake monitor-
ing programmes with remote sensing data, which have impressive spatial
and temporal coverage but require calibration with the in-lake data to en-
sure accuracy. This presents a problem of change-of-support between the
point-scale in-lake data and the grid-cell-scale remote sensing data.
In-lake data have been traditionally used extensively to enable water qual-
ity investigators to understand lake health. They are assumed to be accu-
rate within measurement error, since they are obtained from water samples
that are taken directly from the lake surface and then analysed in a labo-
ratory. However, these data are expensive to collect in terms of both time
and money and so are often sparse in both space and time, with a small

This paper was published as a part of the proceedings of the 33rd Inter-
national Workshop on Statistical Modelling (IWSM), University of Bristol, UK,
16-20 July 2018. The copyright remains with the author(s). Permission to repro-
duce or extract any parts of this abstract should be requested from the author(s).
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number of sampling locations across each lake. They therefore provide lit-
tle information on the spatial patterns in water quality. Remote sensing
data have become much more commonly available in recent years, due to
the increased availability of data from Earth-facing satellite monitoring
programmes. These data provide spatially comprehensive information on
water quality parameters.
In this paper, data for log(chlorophyll-a), an important indicator of lake
water quality, are considered. The example used is Lake Erie, one of the
Great Lakes of North America, which has suffered from poor water quality
in the past and is therefore of interest to regulatory bodies and local com-
munities. The in-lake data are available for 20 locations over 20 months,
collected by the US Environmental Protection Agency and made available
in the LIMNADES database (https://www.limnades.org/home.psp). These
data are collected at several time points within each month and are tem-
porally aggregated onto the monthly scale, before analysis. The remotely-
sensed data are available over the same time period, but with a much
better spatial coverage, with grid cells of up to 300 metres in dimension,
with 351,041 grid cells covering the lake, on a monthly-averaged time-scale.
These European Space Agency Medium Resolution Imaging Spectrometer
data were produced through the GloboLakes project and are available at
https://globolakes.eofrom.space/.
The remotely-sensed data and the in-lake data for August 2007 are shown
in Figure 1 below.

FIGURE 1. Remote sensing data for August 2007, with the in-lake data overlaid
and surrounded by white circles.

This paper presents a spatiotemporal development of the model of Wilkie
et al. (2015), with an application to a spatially-larger dataset. The model
is based upon the approach of Gelfand et al. (2003), which was developed
into a statistical downscaling model by Berrocal et al. (2010) for air quality
data.



Wilkie et al. 209

2 Methodology

A Bayesian hierarchical model is proposed for the fusion of remote sensing
and in-lake data. The model allows for the nj in-lake sampling locations
to differ for each time point j (for j = 1, . . . , t). For the vector of response
data yj , i.e. the vector of in-lake data collected at the nj sampling locations
at time j, and the vector of remote sensing data xj recorded for the nj grid
cells containing these in-lake sampling locations, the model is written as
follows:

yj ∼ Nnj (αj + βj � xj , σ
2
εInj ),

where the vectors of intercepts and slope coefficients αj and βj are al-
lowed to be smoothly spatially-varying and so are given the following
multivariate-Normal prior distributions:

αj ∼ Nnj (0, σ
2
α exp(−φαDj)) and βj ∼ Nnj (1, σ

2
β exp(−φβDj)),

where σ2
α and σ2

β are the spatial variance parameters and φα and φβ are
the spatial decay parameters, controlling how fast the correlations in the
intercept and slope parameters decrease to zero as the distance between
the in-lake sampling locations increases. These parameters are shared over
time, which helps to improve their estimation. The matrix Dj is the nj ×
nj matrix of distances between the in-lake sampling locations for time j.
Finally, the remaining prior and hyperprior distributions must be specified.
The spatial variance parameters and error variance parameter are given the
following distributions:

σ2
α ∼ Inv-Gamma(2, 1), σ2

β ∼ Inv-Gamma(2, 1) and σ2
ε ∼ Inv-Gamma(2, 1),

following the example of Sahu et al. (2006). As noted by Sahu et al. (2006),
the spatial decay parameters are not easy to identify and so a grid search
is performed.
All full conditional posterior distributions can de derived. Therefore, the
model is fitted using Gibbs sampling. To provide predictions over the lake
surface, Delaunay triangulation, constrained by the lake edges, is carried
out to ensure the optimal spatial coverage of the prediction locations.
The temporal aspect of the data is made use of through the sharing of infor-
mation over time, with the error variance and spatial variance parameters
being estimated from the data for all timepoints.

3 Example for Lake Erie

Using the example dataset for Lake Erie, the model is fitted using the R
packages Rcpp and RcppArmadillo, with predictions made at 1000 loca-
tions for each of the 20 months in the dataset. These locations are defined
by a Delaunay triangulation that is constrained by points along the lake
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FIGURE 2. Remote sensing grid cells with prediction points overlaid, as obtained
from a Delaunay triangulation constrained by the boundary points.

edges, using the R package RTriangle. The constraining points and the
resulting inserted points are shown in Figure 2.
The model is run for 2 chains of 10,000 iterations each, with every tenth
iteration saved, after a burn-in period of 100 iterations. Trace and density
plots, such as the examples for the prediction at prediction location 1 for
August 2007 (ỹ1,Aug 2007) shown in Figure 3, provide no evidence against
the assumption that the MCMC chains have converged to their posterior
distributions.

FIGURE 3. (a) Trace plot of the MCMC iterations for ỹ1,Aug 2007; (b) Plot of the
posterior density for ỹ1,Aug 2007.

The resulting predictions for August 2007 are shown in Figure 4(a) and
their corresponding standard errors are given in Figure 4(b). These predic-
tions illustrate the utility of the model for calibrating the remotely-sensed
data using the in-lake data, while retaining the important spatial patterns
of the remote sensing data. Figure 4(a) shows the adjustments to the re-
mote sensing image of Figure 1 as a result of the fusion with the in-lake
data. In the example shown here, the model predictions show that the
northeast of the lake has lower values of log(chlorophyll-a) in August 2007,
while the southwest of the lake has higher values. Figure 4(b) shows that
the standard errors are lowest closest to the in-lake data locations for this
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Predictions for August 2007
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FIGURE 4. (a) Predictions for August 2007, with the in-lake data overlaid and
surrounded by white circles; (b) Standard errors of predictions for August 2007,
with the in-lake data locations marked by white crosses.

month, as expected. The standard errors are small in comparison to the
variation across the lake, providing evidence of a true pattern across the
lake surface. The resulting spatial maps, such as the example shown in Fig-
ure 4(a), would be useful for water quality investigators to identify parts
of the lake of particular interest for further study.

4 Conclusions

The model described in this work enables the fusion of data from in-lake
monitoring schemes, which are limited spatially and temporally, with ex-
tensive remotely-sensed data with good spatial and temporal resolution.
The model makes use of data from multiple available timepoints in order
to improve the estimation of the spatial variance parameters and the er-
ror variance parameter. Predictions can be made at any point location for
which corresponding remotely-sensed data are available, i.e. any location
within a remote sensing grid cell. Delaunay triangulation is used to optimise
the spatial coverage of the prediction locations, in order to gain a better
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understanding of the state of the health of the lake without increasing the
computational complexity of the model.
Future work focusses on dealing with the temporal change of support, which
can be accomplished through treating the data for each in-lake location and
remote-sensing grid-cell as observations of smooth functions over time.
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Abstract: Wilson and Einbeck (2016, 2018) propose a test for zero–modification
relative to a stated model that uses the observed number of zeros as a test
statistic, focusing on a Poisson model. We extend the focus to a negative–binomial
model with fixed size parameter and show that excellent attainment rates and
power are achieved. The extension of the test to negative binomial models where
both parameters are estimated is also discussed.
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1 Introduction

The concept of the zero–inflation and zero–deflation relative to a given
statistical model is now firmly established in the statistical literature. The
terms zero–inflation and zero–deflation have sometimes been combined to-
wards zero–modification, meaning that there are either too few or too many
zeros in the data, relative to the specified count data model. Various tests
for zero–modification already exist: the likelihood ratio test, score (Rao)
and Wald tests. While these tests are all viable, they rely upon asymp-
totic results and hence implicitly on large samples, and their test statistics
do not, in their standard form, transparently distinguish between zero–
inflation and zero–deflation. Wilson and Einbeck (2016, 2018) proposed a
new test for zero–modification that relates more directly to the character
of zero–modification than the other tests: The test employs the number of
observed zeros, n0, in the data as the test statistic, and tests whether this
number is consistent with the non zero–modified model, G. This is achieved
by referencing the value of n0 to the appropriate Poisson-Binomial distri-
bution (Chen and Liu, 1997). The author believes that this feature of the

This paper was published as a part of the proceedings of the 33rd Inter-
national Workshop on Statistical Modelling (IWSM), University of Bristol, UK,
16-20 July 2018. The copyright remains with the author(s). Permission to repro-
duce or extract any parts of this abstract should be requested from the author(s).



214 Sample quantiles for zero–modification tests

test will be very attractive to statistical practitioners. Wilson and Einbeck
(2016, 2018) focus on the case where G is a Poisson model, and show that
the attainment and power of the test compare extremely favourably with
that of other tests of zero–modification. In common with the score test, the
test of Wilson and Einbeck (2016, 2018) does not require the zero–modified
model to be fitted, and unlike all other tests (except the “normal distribu-
tion” version of the Wald test) the test statistic of the observed number of
zeros directly indicates the direction of the zero–modification if it occurs.

1.1 The Estimation of the Mean Parameter

Wilson and Einbeck (2016, 2018) show that for testing for zero–modification
relative to a Poisson model the maximum likelihood estimator of µ, µ̂W =∑n
i=1 yi/n is, for a given value of n0, a precise but biased estimator of µ, and

the estimator µ̂T obtained from the mean of the positive observations is an
apparently unbiased estimator of µ which is however imprecise. It is shown
that the use of µ̂W and µ̂T in the proposed test results in under–attainment
and over-attainment of the nominal significance rate respectively. It is also
shown that the “hybrid estimator”, µ̂H of µ:

µ̂H = hµ̂W + (1− h)µ̂T (1)

where h = 2/3 results in excellent attainment rates and power.

2 Zero–Modified Negative Binomial Models

In this paper we shift the focus to testing for zero–modification relative
to the negative binomial (type II) model with fixed size parameter, α, the
mean parameter µi (possibly) depending on covariates, i.e.

NB(µi) =
Γ
(
y + 1

α

)

Γ
(

1
α

)
Γ (y + 1)

(
αµi

1 + αµi

)y
1

(1 + αµi)
1
α

(2)

Note that for this parameterization:

µ = µi α2 = µi(1 + µiα) (3)

where α = 1 corresponds to a geometric distribution.
Figure 1 illustrates the attainment rate when the test of Wilson and Einbeck
(2016, 2018) is applied to data drawn from negative binomial distributions
with α = 2, n = 100 and α = 5, n = 500; clearly neither µ̂W , µ̂H=2/3 nor
µT result in accurate attainment rates, (as is the case with all sample sizes
and values of α.)
Figure 2 illustrates that excellent attainment rates and power are obtained
when the test of Wilson and Einbeck (2016, 2018) with the estimator
µH=0.55 is used to estimate the mean parameter. The attainment rates and
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FIGURE 1. Observed Attainment
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powers of the likelihood ratio test are also plotted for comparative pur-
poses, as is apparent these are nearly identical with those of the proposed
test.

3 Non-fixed size parameter

With the exception of geometric models, it is extremely rare in practice to
fit NB models with fixed size parameters. It is encouraging that letting h =
0.55 in Equation (1) results in a test with excellent power and attainment,
it may be shown that if the value of α is estimated from the observed data
using maximum likelihood methods, the attainment of the resulting test
is poor. This would however appear to be due not to problems with the
proposed test as such, but to issues concerning the estimation of the size
parameter of negative binomial distributions. Figure 3 shows the rates and
attainments achieved when “fixed α” NB(2, α) models, with α = 1.6, 1.8,
2.0, 2.2 and 2.4 are fitted to 100 data drawn from NB(2.0, 2.0) data, clearly
the proposed test is sensitive to imprecise estimation of the size parameter.

Figure 4 illustrates the observed distribution of the maximum likelihood
estimates of the size parameters obtained when samples of 100 data are
drawn from NB(2, 2) data. Whilst it would appear that the estimates from
the whole samples are unbiased, they are clearly imprecise, whereas those
from the truncated samples are biased, and are extremely imprecise, this
begs the question as to the suitability of maximum likelihood estimation
of the size parameter of a negative binomial distribution. Various authors
have investigated the estimation of the parameters of negative binomial
distributions, the reader is referred to Section 5.8 of Johnson, Kotz and
Kemp (1992) for a discussion of these.
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FIGURE 2. Left: observed attainment under various values of h; right: observed
power for µ̂H = 0.55µW + 0.45µT . (ω = zero–modification parameter)
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FIGURE 3. Observed attainment under correct (α = 2.0) and “wrong” size
parameter estimates.

FIGURE 4. MLE of α obtained from whole and truncated samples from a
NB(2, 2) distribution.
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4 Conclusion

It is clear that the test proposed by Wilson and Einbeck (2016, 2018) has ex-
cellent attainment rate and power when used as a test of zero–modification
relative to a negative binomial (type II) distribution with fixed size param-
eter (α) if a hybrid estimator 0.55µ̂W + 0.45µ̂T is employed. The situation
for non-fixed α is not clear, and would appear to be dependent on the de-
velopment of methods of obtaining precise estimates of the size parameter.
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Abstract: For composite estimation, weights are needed to combine the differ-
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mators in the setting of quantile regression. We pay particular attention to the
high-dimensional case where due to the regularization, different expressions may
be used to define so-called optimal weights.

Keywords: Quantile regression; Penalized estimation; Composite estimation;
Weight choice.

1 Definitions of composite and model averaged
quantile estimators

Let us consider a linear model Y = Xβ + ε where the response Y ∈ Rn×1,
the design matrix X ∈ Rn×p and the coefficient vector β ∈ Rp×1. The error
ε = (ε1, . . . , εn)> with εj ’s independent and identically distributed; and
F and f denote respectively the cumulative distribution and the density
function of εj .
For a single quantile τ ∈ (0, 1), Koenker (1984) defined the estimator of
the 100τ% quantile of the response Y as

(b̂τ , β̂τ ) = arg min
bτ ,β

n∑

i=1

ρτ (Yi − bτ −X>i β),

where ρτ (z) = τI{z ≥ 0}z + (τ − 1)I{z < 0}z.
Estimating multiple quantile regressions with 1 < τ1 < . . . < τK < 1,
while allowing different weights ν = (ν1, . . . , νK), leads to the composite

This paper was published as a part of the proceedings of the 33rd Inter-
national Workshop on Statistical Modelling (IWSM), University of Bristol, UK,
16-20 July 2018. The copyright remains with the author(s). Permission to repro-
duce or extract any parts of this abstract should be requested from the author(s).
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estimator

(b̂τ1,c, . . . , b̂τK ,c, β̂
>
c (ν)) = arg min

bτ1 ,...,bτK ,β

K∑

k=1

νk

n∑

i=1

ρτk(Yi − bτk −X>i β).

To construct the model averaged estimator, we calculate the weighted av-
erage of K quantile estimates β̂τk from (1), which results in the model
averaged estimator

β̂mod.avg(ω) =
K∑

k=1

ωkβ̂τk ,

where ω = (ω1, . . . , ωK)> is the weight vector, and we impose the assump-

tion that
∑K
k=1 ωk = 1 and ωk ≥ 0. In low dimensions, the limiting normal

distribution of the estimators, see Koenker and Bassett (1978), can be used
to define weights that minimize the asymptotic variance. It is found that
both estimators have the same lower bound for the variance.

2 High dimensional composite and model averaged
quantile estimators

We consider the linear model Y = Xβ + ε from the previous section. Ad-
ditionally, we allow p, the number of columns of X, to be an exponential
order of the sample size n such that log(p) = O(nδ) with δ ∈ (0, 1), and the
sparsity s = O(nα0), α0 ∈ (0, 1). In this sparse high-dimensional setting,
Bradic et al. (2011) considered a penalized composite quantile estimator

(b̂τ1,c,pen, . . . , b̂τK ,c,pen, β̂
>
c,pen(ν))

= arg min
bτ1 ,...,bτK ,β

{
K∑

k=1

νk

n∑

i=1

ρτk(Yi − bτk −X>i β) + n

p∑

j=1

γλ(|β(0)
j |)|βj |},

where |β(0)
j | is some initial slope estimator (e.g. the Lasso, penalized quan-

tile estimation, etc.), and γλ(·) is the derivative of the penalty function.
Here, we consider only the SCAD penalty (Fan and Li, 2001) which leads
to γλ(u) = λ[I{u ≤ λ}+ max(aλ− x, 0)I{x > λ}/{(a− 1)λ}].
We reorganize the design matrix as X̃ = (Xa, Xb) and the coefficient
β> = (β>a , β

>
b ), where Xa consists of the columns of X having non-zero

coefficients βa, and Xb to those columns having zero coefficients βb. Bradic
et al. (2011) showed the asymptotic normality for the active set βa with the
lower bound of the variance sharing the same expression with classical one
(f̃>A−1f̃)−1, where f̃ = (f(b∗τ1), . . . , f(b∗τK )) and b∗τk = F−1(τk) the true

100τk% quantile of the error. The optimal weight νopt = A−1f̃ is chosen to

maximize the efficiency of the estimator β̂a.
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FIGURE 1. Simulated (over 1000 runs) relative efficiency of the
model averaged estimator with the estimated non-negative optimal
weights to the equally weighted model averaged estimator, defined as∑1000
r=1

∑p
j=1{β̂rj (ω̂+

opt)− βtrue
j }2

/∑1000
r=1

∑p
j=1{β̂rj (1k/k)− βtrue

j }2.

The penalized model averaged estimator (see Bloznelis et al., 2017) is de-
fined as

β̂mod.avg.pen(ω) =
K∑

k=1

ωkβ̂τk,pen, (1)

where

(b̂τk , β̂τk,pen) = arg min
bτk ,β
{
n∑

i=1

ρτk(Yi − bτk −X>i β) + n

p∑

j=1

γλk(|β(0)
j |)|βj |}.

Mimicking the same assumptions and arguments in Bradic et al. (2011),

we obtain the asymptotic normality of β̂mod.avg.pen(ω) considering the co-
efficient vector corresponding to the true active set. This leads to finding
a set of optimal weights that minimizes the asymptotic variance of this
estimator.

3 The effect of the weight choice

Several issues lead to non-optimality of the so-called optimal weights. First,
there is the issue of estimating the unknown error distribution, second,
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the very fact of estimating the variance to be minimized as a function
of the weights, leads to weights that are different, and hence no longer
optimal, as compared to when the true variance expression would be min-
imized. To avoid any estimation, equal weights form a simpler option. For
the model averaged estimator, Figure 1 compares the simulated relative
efficiency of estimators using equal weights with that of using estimated
optimal weights. We observe that using the latter weights leads to higher
efficiencies mostly for skewed or heavy tail distributions. For Weibull(1.5, 1)
and Exp(1), using non-negative optimal weights helps to improve the effi-
ciency. For the t distribution it depends on the degrees of freedom and the
number of quantiles which weight choice is preferred.

4 Compare optimal weights of the model averaged
estimator

In the previous section, we worked with the expression of the limiting distri-
bution of the estimator for the active set of coefficients. This construction
ignores the selection effect of the regularization. Indeed, in practice one
might not arrive at the estimated true set of active coefficients, but some
truly active coefficients might have been set to zero, while other truly zero
coefficients might have been estimated by a non-zero value.
An alternative approach, while taking selection into account, is to con-
sider the robust approximate message passing algorithm (RAMP) in Bradic
(2016) to construct penalized quantile estimators at K quantiles. To con-
struct the model averaged estimator from RAMP, we inherit the same
assumption in Koenker (2005) assuming the single quantile regression esti-
mator of the slope βτ is consistent for β0 which is the true slope vector in
the linear model Y = Xβ+ ε; the consistency holds for any fixed τ ∈ (0, 1).
Hence we expect that for any single quantile τk, k = 1, . . . ,K, Lemma 1
and Theorem 1 in Bradic (2016) holds; and the empirical distributions of
the slopes for each quantile τk, as well as the achieved model averaged
estimator defined in Eq.(1), converge weakly to the common probability
measure fB0 .

Consider the empirical mean squared error MSE = 1
p

∑p
j=1(β̂t

j − β0,j)
2 at

iteration t, as defined in Bradic (2016), the mean squared error of the model
averaged estimator follows

MSE(βt
mod.avg.pen, β0) =

1

p

p∑

j=1

(β̂t
mod.avg.pen,j − β0,j)

2

=
1

p

p∑

j=1

(
K∑

k=1

wkβ̂
t
τk,j
− β0,j)

2 = w>Σ̂0w

where Σ̂0 is a K ×K matrix with (Σ̂0)k1,k2 = (β̂tτk1
− β0)(β̂tτk2

− β0) and

k1, k2 = 1, . . . ,K. Following section If.1 in Rao (1973), the lower bound
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of the MSE of the model averaged estimator is (1>KΣ̂−1
0 1K)− where 1K

denotes a column vector with length K and (·)− denotes a generalized
inverse of a matrix. Furthermore, the lower bound is attained at wopt =

Σ̂−1
0 1K(1>KΣ̂−1

0 1K)−; while restricting the weights to be nonnegative, we
obtain an alternative optimal weight

wopt+ = argmin
0≤w≤1,1Kw=1

w>Σ̂0w. (2)

Notice that the expression of the core covariance-like matrix Σ̂0 contains
the true value of the regression coefficient which is unknown in practise. To
utilize the above-mentioned lower bound of the MSE and optimal weight,
we derive a consistent estimator for the covariance-like matrix. The estima-
tor requires only estimations from each iteration of the RAMP algorithm,
as well as an empirical covariance estimation. Derivation of the consistent
estimator relies on the limiting Gaussian distribution of the RAMP algo-
rithm for the large system.
The derived estimator for the (k1, k2)’th component of the matrix Σ̂0 is as
follows (See Zhou and Claeskens, 2018)

(Σ̂)k1,k2 = −ζ̄τk1 ,τk2 +
〈
η(β̃tτk1

; θτk1 ,t)− β̃τk1 ,t, η(β̃tτk2
; θτk2 ,t)− β̃τk2 ,t

〉
+

ζ̄τk1 ,τk2
〈
η′(β̃tτk1 ; θτk1 ,t)

〉
+ ζ̄τk1 ,τk2

〈
η′(β̃tτk2 ; θτk2 ,t)

〉
,

where the β̃tτki
’s are the pseudo-data sequences, which are the noisy coef-

ficient estimations, from the RAMP algorithm; ζ̄τk1 ,τk2 is the covariance

of the β̃tτk1
and β̃tτk2

, which can be estimated empirically; η(·; θ) is the
soft-thresholding function with parameter θ.
We investigate the performance of the two versions of the optimal weights,
without and with selection uncertainty, by a simulation study. We choose
the sample size n = 320, dimension p = 500, and the quantile components
at τk = 0.3, 0.5, 0.7. The distribution of the true coefficient is P (β0 =
1) = P (β0 = 1) = 0.064 and P (β0 = 0) = 0.872. The design matrix
X ∼ N (0, 1/n), which is an assumption of the RAMP algorithm. Figure 2
compares the simulated MSE of the model averaged estimators using the
optimal weights in Bloznelis et al. (2017) over that using the optimal weight
in Eq.(2). We see that the model averaged estimator using the optimal
weight in Eq.(2) outperforms that using the optimal weight in Bloznelis et
al. (2017) consistently for all three error distributions.
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1 Introduction

The Phase I and II approach of the traditional control chart does not fit for
short run production environments because the process parameters must
be estimated dynamically to monitor the in-control state of the process as
well as keep the fraction nonconforming low.
Bulk product quality characteristics, such as the percentage protein or fat,
are determined using analytical methods which involve considerable mea-
surement uncertainty. Guardbanding is an offset technique used to compen-
sate for measurement and sampling uncertainty and thereby reducing the
risk of nonconformance to specifications. Chou and Chen (2005) developed
a kernel density estimator after deconvolution of the density to adjust for
the measurement error and then determined the optimal guardband limit
that controls both producer’s and consumer’s risks. Williams and Hawkins
(1993) proposed a cost model taking into account measurement error and
then adjusting the guardband width.
Acceptance control chart is a hybrid approach to both control charting
and limiting the proportion nonconforming of products exceeding specifi-

This paper was published as a part of the proceedings of the 33rd Inter-
national Workshop on Statistical Modelling (IWSM), University of Bristol, UK,
16-20 July 2018. The copyright remains with the author(s). Permission to repro-
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cations. An introduction to acceptance control charts and further discussion
are in Duncan (1986) and Wu (1998). The traditional acceptance control
methodology requires an indifference zone to be set, and it does not allow
for measurement errors. As a result, these traditional acceptance control
chart procedures cannot be used for bulk products.
Much of the current literature on acceptance control charting and guard-
banding assumes that the process characteristic is normal distributed. No
unified method is available in the literature to deal with short run process
monitoring, acceptance control chart and guardbanding. Govindaraju and
Jones (2015) proposed a probabilistic measure for quantifying the noncon-
formance after adjusting for measurement uncertainty when the underlying
measurement error distribution is known. This fractional nonconformance
(FNC) statistic was initially applied for acceptance sampling inspection,
and was further implemented for short run process monitoring by Zhou et
al. (2017). Our current research is focussed on the use of fractional non-
conformance principles for guardbanded acceptance control charting under
both normal and beta processes involving measurement errors.

2 Guardbanded acceptance control chart plan

We develop a guardbanded acceptance control chart plan to monitor the
short run process as well as dispose the products manufactured from the
process simultaneously. Under the acceptance control chart plan, the pro-
duction run is accepted only if the process is under control and the over-
all nonconformance level is low. Zhou et al. (2017) found that average
FNC ( ˆpAj ) is more sensitive than individual FNC (p̂Ij ) in detection of
a sudden shift in the process. Let X ∼ N(µX , σ

2
X), Z ∼ N(0, σ2

Z) and
Y ∼ N(µX , σ

2
X + σ2

Z), assuming that there is no instrument bias, where
X,Y, Z are the true measurement, the apparent measurement and the mea-
surement error respectively. For a random sample with apparent sample
measurements (yi, y2, ..., yn), p̂Ij and ˆpAj can be calculated using Equations
1 and 2 when σz is known and then used to evaluate the nonconformance
level and monitor the process respectively.

p̂Ij = P (xj > USL) = P (z < yj −USL) = Φ

(
yj −USL

σz

)
(1)

p̂Aj =
1

t

t∑

j=1

Φ

(
yj −USL

σz

)
(2)

The control chart rule for process monitor as well as the rule for product
acceptance must be met at the same time for greater assurance to the
consumer. Therefore, the probability of acceptance of a batch with size n
under the acceptance control chart plan is defined as below:
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Pa = Pr


{

n∑

j=1

p̂Ij ≤ nAc} ∩ { ˆpAj < UCLA}


 (3)

where Ac and UCLA are the fractional acceptance number and the upper
control limit of average fractional nonconformance control chart respec-
tively. For j = 1, 2, ..., n, the event { ˆpAj < UCLA} ensures that the short-
run production process is in-control while the event {∑n

j=1 p̂Ij ≤ nAc}
ensures that the lot or product quality does not exceed the set nonconfor-
mance requirement.

The overall Type I error of the proposed acceptance control chart plan
(αa) can be split into Type I errors of acceptance sampling plan (αl) and
process control plan (αp), which are determined by the selection of Ac and
UCLA respectively. The guardband coefficient g, which defined as the ratio
of guardband limit (UGL) and specification limit (USL), controls both αl
and αp. When g decreases from 1, a tightened limit UGL is adopted instead
of USL, and as a result, both p̂Ij and ˆpAj will increase. In other words, a
small g will increase the probability of Type I error for both lot acceptance
and process control. Hence, for a given αa, several combinations of αl and
αp are possible; so is the case with the combinations of g, Ac and UCLA.
This research is focussed on finding the optimum guardbanded acceptance
control chart parameters controlling both producer’s and consumer’s risks.

2.1 Risk model

In the risk model, the producer’s risk is fixed at a certain level, say αa = 5%,
and the optimum guardband is the one which results in the minimum con-
sumer’s risk. Under both normal process model Y ∼ N(0.25, 0.01) and beta
process model Y ∼ Beta(500, 1500), we found that the optimum guardband
selection does not rely on the process distribution too much when the pro-
cess mean and SD are matched, see Figure 1. In other words, the optimum g
obtained under normal model is robust for independent processes assuming
process variation σ2

Y is known. Although this assumption is validated on
empirical grounds for compositional material production processes, it may
not be legitimate for discrete item production processes. Hence, we further
investigated the properties of guardbanded acceptance control chart plan
for unknown dispersion parameters. Even though we expected a tighter
guardband width to compensate for the higher sampling-related uncer-
tainty, we found that the optimum guardband width for SD-unknown pro-
cess is not as stringent as the SD-known process due to the producer’s risk
constraint, as shown in Figure 2.



228 Fractional Nonconformance Based Guardbanding

5 10 15 20 25 30

0.
5

0.
6

0.
7

0.
8

0.
9

n

g

optimum g vs n

Y~N(0.25,0.01)

Y~Beta(500,1500)

FIGURE 1. Optimum guardband Y ∼ N(0.25, 0.01) vs Y ∼ Beta(500, 1500)

0 5 10 15 20 25 30

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

n

g

Known

Unknown

optimum g vs n

FIGURE 2. Optimum guardband SD-known vs SD-unknown

2.2 Cost model

A simple cost model was also studied to determine the optimum guardband.
We considered different cost ratios (c = 10, 50, 100 and 500) of Type II
and Type I errors and found that the optimum guardband is primarily
a function of the cost ratio. The higher the cost ratio is, the tighter the
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guardband width should be. The optimum guardband becomes constant for
high cost ratios particularly when the production length is 25 or more, see
Figure 3. The consumer’s risk was found to be high when the production
length is small. The guardbanding approach can reduce the consumer’s
risk significantly for small production lengths. When the production length
reaches a certain limit such as 25, the consumer’s risk tends to be stable.
Hence, the guardbanding approach is preferable for consumer protection
when the production length is shorter, say below 50.
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FIGURE 3. Optimum guardband for different cost ratios

3 Data analysis

The proposed guardbanded acceptance control chart plan was motivated
by dairy industry problems. The newly developed guardbanded accep-
tance control chart plan was trialled using the whole milk powder pro-
duction data. We examined 24 batches of data with length between 4
and 20 samples. Quality characteristics of the whole milk powder, in-
cluding moisture, protein, fat and P:SNF were analyzed. We found that
the guardbanded approach also works well in very short process. In other
words, the guardbanded acceptance control chart plan can be applied to
both grand and sublots formed. Our analysis also showed that the opti-
mum guardband widths obtained in risk and cost models are consistent
and comparable. The implementation of the proposed guardbanded accep-
tance control chart plan was done dynamically using a Shiny app hosted
at https://zhouxin07.shinyapps.io/guardbanding/.
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